Skip to main content

Advertisement

Log in

Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

When highly active antiretroviral therapy is administered for long periods of time to HIV-1 infected patients, most patients achieve viral loads that are “undetectable” by standard assay (i.e., HIV-1 RNA < 50 copies/ml). Yet despite exhibiting sustained viral loads below the level of detection, a number of these patients experience unexplained episodes of transient viremia or viral “blips”. We propose here that transient activation of the immune system by opportunistic infection may explain these episodes of viremia. Indeed, immune activation by opportunistic infection may spur HIV replication, replenish viral reservoirs and contribute to accelerated disease progression. In order to investigate the effects of intercurrent infection on chronically infected HIV patients under treatment with highly active antiretroviral therapy (HAART), we extend a simple dynamic model of the effects of vaccination on HIV infection [Jones, L.E., Perelson, A.S., 2002. Modeling the effects of vaccination on chronically infected HIV-positive patients. JAIDS 31, 369–377] to include growing pathogens. We then propose a more realistic model for immune cell expansion in the presence of pathogen, and include this in a set of competing models that allow low baseline viral loads in the presence of drug treatment. Programmed expansion of immune cells upon exposure to antigen is a feature not previously included in HIV models, and one that is especially important to consider when simulating an immune response to opportunistic infection. Using these models we show that viral blips with realistic duration and amplitude can be generated by intercurrent infections in HAART treated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badovinac, V.P., Porter, B.B., Harty, J.T., 2002. Programmed contraction of CD8+ T cells after infection. Nature Immunol. 3, 619–626.

    Article  Google Scholar 

  • Bevan, M.J., 2004. Helping the CD8+ T-cell response. Nature Rev. Immunol. 4, 595–602.

    Article  Google Scholar 

  • Blattman, J.N., Antia, R., Sourdive, D.J.D., Wang, X., Kaech, S.M., Murali-Krishna, K., Altman, J.D., Ahmed, R., 2002. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664.

    Article  Google Scholar 

  • Bonhoeffer, S., Coffin, J.M., Nowak, M.A., 1997. Human immunodeficiency virus drug therapy and virus load. J. Virol. 71, 3275–3278.

    Google Scholar 

  • Brichacek, B., Swindells, S., Janoff, E.N., Pirruccelo, S., Stevenson, M., 1996. Increased plasma human immunodeficiency virus type 1 burden following antigenic challenge with pneumoccocal vaccine. J. Infect. Dis. 174, 1191–1199.

    Google Scholar 

  • Callaway, D.S., Perelson, A.S., 2002. HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64.

    Article  Google Scholar 

  • Davenport, M.P., Ribeiro, R.M., Perelson, A.S., 2004. Kinetics of virus specific CD8+ T cells and the control of HIV infection. J. Virol. 78, 10096–10103.

    Google Scholar 

  • De Boer, R.J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., Perelson, A.S., 2001. Recruitment times, proliferation, and apoptosis rates during the CD8+ T cell response to LCMV. J. Virol. 75, 10663–10669.

    Google Scholar 

  • De Boer, R.J., Homann, D., Perelson, A.S., 2003. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171, 3928–3935.

    Google Scholar 

  • De Boer, R.J., Perelson, A.S. Estimating division and death rates from CFSE data. J. Comput. Appl. Math. (in press).

  • Deenick, E.K., Gett, A.V., Hodgkin, P.D., 2003. Stochastic model of T cell proliferation: A calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–4972.

    Google Scholar 

  • Di Mascio, M., Markowitz, M., Louie, M., Hogan, C., Hurley, A., Ho, D.D., Perelson, A.S., 2003a. Viral blip dynamics during highly active antiretroviral therapy. J. Virol. 77, 12165–12172.

  • Di Mascio, M., Dornadula, G., Zhang, H., Sullivan, J., Xu, Y., Kulkosky, J., Pomerantz, R., Perelson, A.S., 2003b. In a subset of patients on highly active antiretroviral therapy plasma HIV-1 RNA can decay from 50 copies/ml to <5 copies/ml with a half-life of six months. J. Virol. 77, 2271–2275.

    Article  Google Scholar 

  • Di Mascio, M., Ribeiro, R.M., Markowitz, M., Ho, D.D., Perelson, A.S., 2004a. Modeling the long-term control of viremia in HIV-1 infected patients treated with antiretroviral therapy. Math. Biosci. 188, 47–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Di Mascio, M., Markowitz, M., Louie, M., Hurley, A., Hogan, C., Simon, V., Follman, D., Ho, D.D., Perelson, A.S., 2004b. Dynamics of intermittent viremia during highly active antiretroviral therapy in patients who initiate therapy during chronic versus acute and early human immunodeficiency virus type 1 infection. J. Virol. 78, 10566–10573.

  • Donovan, R.M., Bush, C.E., Markowitz, N.P., Baxa, D.M., Saravolatz, L.D., 1996. Changes in virus load markers during AIDS-associated opportunistic diseases in human-immunodeficiency virus-infected persons. J. Infect. Dis. 174, 401–403.

    Google Scholar 

  • Dornadula, G., Zhang, H., VanUitert, B., Stern, J., Livornese Jr., L., Ingerman, M.J., Witek, J., Kedanis, R.J., Natkin, J., DeSimone, J., Pomerantz, R.J., 1999. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. J. Amer. Med. Assoc. 282, 1627–1632.

    Article  Google Scholar 

  • Ferguson, N.M., de Wolf, F., Ghani, A.C., Fraser, C., Donnelly, C.A., Reiss, P., Lange, J.M.A., Danner, S.A., Garnett, G.P., Goudsmit, J., Anderson, R.M., 1999. Antigen-driven CD4+ T-cell and HIV-1 dynamics: residual viral replication under highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 96, 15167–15172.

    Google Scholar 

  • Fraser, C., Ferguson, N.M., de Wolf, F., Anderson, R.M., 2001a. The role of antigenic stimulation and cytotoxic T cell activity in regulating long-term immunopathogenesis of HIV: mechanisms and clinical implications. Proc. R. Soc. Lond. B. 268, 2085–2095.

    Article  Google Scholar 

  • Fraser, C., Ferguson, N.M., Anderson, R.M., 2001b. Quantification of intrinsic residual viral replication in treated HIV-infected patients. Proc. Natl. Acad. Sci. USA 98, 15167–15172.

    Google Scholar 

  • Gett, A.V., Hodgkin, P.D., 2000. A cellular calculus for signal integration by T cells. Nature Immunol. 1, 239–244.

    Article  Google Scholar 

  • Holte, S.A., Melvin, A., Mullins, J., Frenkel, L., 2001. Density-dependent decay in HIV dynamics after HAART (Abstract 394). In: 8th Conference on Retroviruses and Opportunistic Infections. Foundation for Retrovirology and Human Health, Alexandria, VA, USA.

    Google Scholar 

  • Jones, L.E., Perelson, A.S., 2002. Modeling the effects of vaccination on chronically infected HIV-positive patients. JAIDS 31, 369–377.

    Google Scholar 

  • Kaech, S.M., Ahmed, R., 2001. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422.

    Google Scholar 

  • Kaufmann, D.E., Bailey, P.M., Sidney, J., Wagner, B., Norris, P.J., Johnston, M.N., Cosimi, L.A., Addo, M.M., Lichterfeld, M., Altfeld, M., Frahm, N., Brander, C., Sette, A., Walker, B.D., Rosenberg, E.S., 2004. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. J. Virol. 78, 4463–4477.

    Article  Google Scholar 

  • Kim, R.B., Fromm, M.F., Wandel, C., Leake, B., Wood, A.J., Roden, D.M., Wilkinson, G.R., 1998. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101, 289–294.

    Article  Google Scholar 

  • Lee, W.T., Pasos, G., Cecchini, L., Mittler, J.N., 2002. Continued antigen stimulation is not required during CD4+ T cell clonal expansion. J. Immunol. 168, 1682–1689.

    Google Scholar 

  • McLean, A.R., Nowak, M.A., 1992. Models of interactions between HIV and other pathogens. J. Theor. Biol. 155, 69–102.

    Google Scholar 

  • Meaden, E.R., Hoggard, P.G., Newton, P., Tjia, J.F., Aldam, D., Cornforth, D., Lloyd, J., Williams, I., Back, D.J., Khoo, S.H., 2002. P-glycoprotein and MRP1 expression and reduced ritonavir and saquinavir accumulation in HIV-infected individuals. J. Antimicrob. Chemother. 50, 583–588.

    Article  Google Scholar 

  • Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A.S., Ho, D.D., 1998. Rapid turnover of T-lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227.

    Article  Google Scholar 

  • Murali-Krishna, K., Altman, J.D., Suresh, M., Sourdive, D., Zajac, A., Miller, J.D., Slansky, J., Ahmed, R., 1998a. Counting antigen-specific CD8 T cells: a reevaluation of the bystander activation during viral infection. Immunity 8, 177–187.

    Article  Google Scholar 

  • Murali-Krishna, K., Altman, J.D., Suresh, M., Sourdive, D., Zajac, A., Ahmed, R., 1998b. In vivo dynamics of antiviral CD8+ T cell responses to different epitopes: an evaluation of bystander activation in primary and secondary responses to viral infection. Adv. Exp. Med. Biol. 452, 123–142.

    Google Scholar 

  • Nowak, M.A., Bangham, C.R.M., 1996. Population dynamics of immune responses to persistent viruses. Science 272, 74–79.

    Google Scholar 

  • Nowak, M.A., May, R.M., 2000. Virus dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • O’Brien, W.A., Grovit-Ferbas, K., Namazi, A., Ovcak-Derzic, S., Wang, H.J., Park, J., Yeramian, C., Mao, S.H., Zack, J.A., 1995. Human immunodeficiency virus type 1 replication can be increased in the peripheral blood of seropositive patients after influenza vaccination. Blood 86, 1982–1089.

    Google Scholar 

  • Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D., 1996. HIV-1 dynamics in vivo: Virion clearance rate, infected cell lifespan, and viral generation time. Science 271, 1582–1586.

    Google Scholar 

  • Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., Ho, D.D., 1997. Decay characteristics of HIV-1 infected compartments during combination therapy. Nature 271, 1582–1586.

    Google Scholar 

  • Perelson, A.S., 2002. Modelling viral and immune system dynamics. Nature Rev. Immunol. 2, 28–36.

    Article  Google Scholar 

  • Perno, C., Newcombe, F.M., Davis, D., Aquaro, S., Humphrey, R.W., Calio, R., Yarchoan, R., 1998. Relative potency of protease inhibitors in monocytes/macrophages acutely and chronically infected with human immunodeficiency virus. J. Infect. Dis. 178, 413–422.

    Google Scholar 

  • Puddu, P., Fais, S., Luciani, F., Gherardi, G., Dupuis, M.L., Romagnioli, G., Ramoni, C., Cianfriglia, M., Gessani, S., 1999. Interferon-γ up-regulates expression and activity of P-glycoprotein in human peripheral blood monocyte-derived macrophages. Lab. Invest. 79, 1299–1309.

    Google Scholar 

  • Revy, P., Sospedra, M., Barbour, B., Trautman, A., 2001. Functional antigen-independent synapses formed between T-cells and dendritic cells. Nature Immunol. 2, 925–931.

    Article  Google Scholar 

  • Sachsenberg, N., Perelson, A.S., Yerly, S., Schockmel, G.A., Leduc, D., Hirschel, B., Perrin, L., 1998. Turnover of CD4+ and CD8+ T Lymphocytes in HIV-1 Infection as Measured by Ki-67 Antigen. J. Exp. Med. 187, 1295–1303.

    Article  Google Scholar 

  • Stanley, S.K., Ostrowski, M.A., Justement, J.S., Gantt, K., Hedayati, S., Mannix, M., Roche, K., Schwartzentruber, D., Fox, C.H., Fauci, A.S., 1996. Effect of immunization with a common recall antigen on viral expression in patients infected with human immunodeficiency virus type 1. N. Engl. J. Med. 334, 1222–1230.

    Article  Google Scholar 

  • Staprans, S.I., Hamilton, B., Follansbee, S., Elbeik, T., Barbosa, P., Grant, R., Feinberg, M., 1995. Activation of virus replication after vaccination of HIV-1 infected individuals. J. Exp. Med. 182, 1727–1737.

    Article  Google Scholar 

  • Sun, J.C., Williams, M.A., Bevan, M.J., 2004. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nature Immunol. 5, 927–933.

    Article  Google Scholar 

  • Van Stipdonk, M.J., Lemmons, E.E., Schoenberger, S.P., 2001. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol. 21, 29–70.

    Google Scholar 

  • Wodarz, D., Nowak, M.A., 2000. CD8 escape, immunodominance, and antigenic escape. Eur. J. Immunol. 30, 2704–2712.

    Article  Google Scholar 

  • Wodarz, D., May, R.M., Nowak, M.A., 2000. The role of antigen-independent persistence of memory cytotoxic T lymphocytes. Int. Immunol. 12, 467–477.

    Article  Google Scholar 

  • Wong, P., Pamer, E.G., 2003. CD8 T-cell responses to infectious pathogens. Ann. Rev. Immunol. 21, 29–70.

    Article  Google Scholar 

  • Zhang, Z.Q., Wietgrefe, S.W., Li, Q., Shore, M.D., Duan, L., Reilly, C., Lifson, J.D., Haase, A.T., 2004. Roles of substrate activity and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc. Natl. Acad. Sci. USA 101, 5640–5645.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Jonesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonesa, L.E., Perelson, A.S. Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART. Bull. Math. Biol. 67, 1227–1251 (2005). https://doi.org/10.1016/j.bulm.2005.01.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2005.01.006

Keywords

Navigation