A highly-accurate finite element method with exponentially compressed meshes for the solution of the Dirichlet problem of the generalized Helmholtz equation with corner singularities

https://doi.org/10.1016/j.cam.2019.04.004Get rights and content
Under an Elsevier user license
open archive

Abstract

In this study, a highly-accurate, conforming finite element method is developed and justified for the solution of the Dirichlet problem of the generalized Helmholtz equation on domains with re-entrant corners. The kth order Lagrange elements are used for the discretization of the variational form of the problem on exponentially compressed polar meshes employed in the neighbourhood of the corners whose interior angle is απ, α12, and on the triangular and curved mesh formed in the remainder of the polygon. The exponentially compressed polar meshes are constructed such that they are transformed to square meshes using the Log-Polar transformation, simplifying the realization of the method significantly. For the error bound between the exact and the approximate solution obtained by the proposed method, an accuracy of O(hk), h mesh size and k1 an integer, is obtained in the H1-norm. Numerical experiments are conducted to support the theoretical analysis made. The proposed method can be applied for dealing with the corner singularities of general nonlinear parabolic partial differential equations with semi-implicit time discretization.

MSC

65N30
65N50
65N15
65N12
65N22

Keywords

Mesh refinement
Helmholtz equation
Singularity problem
Finite element method
Error analysis

Cited by (0)