Comptes Rendus
Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements
[Propriétés mécaniques des nanotubes de carbone : prédictions théoriques et résultats expérimentaux]
Comptes Rendus. Physique, Volume 4 (2003) no. 9, pp. 993-1008.

Les propriétés mécaniques des nanotubes de carbone sont discutées à la lumière des dernières avancées dans la modélisation et l'expérimentation.

Mechanical properties of carbon nanotubes are discussed based on recent advances in both modeling and experiment.

Publié le :
DOI : 10.1016/j.crhy.2003.08.001
Rodney S. Ruoff 1 ; Dong Qian 2 ; Wing Kam Liu 1

1 Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
2 Department of Mechanical, Industrial and Nuclear Engineering, University of Cincinnati, Cincinnati, OH 45221-0072, USA
@article{CRPHYS_2003__4_9_993_0,
     author = {Rodney S. Ruoff and Dong Qian and Wing Kam Liu},
     title = {Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements},
     journal = {Comptes Rendus. Physique},
     pages = {993--1008},
     publisher = {Elsevier},
     volume = {4},
     number = {9},
     year = {2003},
     doi = {10.1016/j.crhy.2003.08.001},
     language = {en},
}
TY  - JOUR
AU  - Rodney S. Ruoff
AU  - Dong Qian
AU  - Wing Kam Liu
TI  - Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 993
EP  - 1008
VL  - 4
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2003.08.001
LA  - en
ID  - CRPHYS_2003__4_9_993_0
ER  - 
%0 Journal Article
%A Rodney S. Ruoff
%A Dong Qian
%A Wing Kam Liu
%T Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements
%J Comptes Rendus. Physique
%D 2003
%P 993-1008
%V 4
%N 9
%I Elsevier
%R 10.1016/j.crhy.2003.08.001
%G en
%F CRPHYS_2003__4_9_993_0
Rodney S. Ruoff; Dong Qian; Wing Kam Liu. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus. Physique, Volume 4 (2003) no. 9, pp. 993-1008. doi : 10.1016/j.crhy.2003.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.08.001/

[1] A.A. Mamedv; N.A. Kotov; M. Prato; D.M. Guldi; J.P. Wicksted; A. Hirsch Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Materials, Volume 1 (2002), pp. 190-194

[2] T.L.L. Brown; B.E. Bursten; H.E. Lemay Chemistry: The Central Science, Prentice-Hall, 1999

[3] M. Fujita; R. Saito; G. Dresselhaus; M.S. Dresselhaus Formation of general fullerenes by their projection on a honeycomb lattice, Phys. Rev. B, Volume 45 (1992) no. 23, pp. 13834-13836

[4] M.S. Dresselhaus; G. Dresselhaus; R. Saito Physics of carbon nanotubes, Carbon, Volume 33 (1995) no. 7, pp. 883-891

[5] M.S. Dresselhaus; G. Dresselhaus; P.C. Eklund Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996

[6] M.S. Dresselhaus; G. Dresselhaus; P.C. Eklund Fullerenes, J. Mater. Res., Volume 8 (1993), p. 2054

[7] S. Iijima; T. Ichihashi; Y. Ando Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, Volume 356 (1992) no. 6372, pp. 776-778

[8] S. Iijima Growth of carbon nanotubes, Mater. Sci. Engrg. B, Volume 19 (1993) no. 1–2, pp. 172-180

[9] Y. Saito; T. Yoshikawa; S. Bandow; M. Tomita; T. Hayashi Interlayer spacings in carbon nanotubes, Phys. Rev. B, Volume 48 (1993) no. 3, pp. 1907-1909

[10] O. Zhou; R.M. Fleming; D.W. Murphy; C.H. Chen; R.C. Haddon; A.P. Ramirez; S.H. Glarum Defects in carbon nanostructures, Science, Volume 263 (1994) no. 5154, pp. 1744-1747

[11] C.H. Kiang; M. Endo; P.M. Ajayan; G. Dresselhaus; M.S. Dresselhaus Size effects in carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 9, pp. 1869-1872

[12] S. Amelinckx; D. Bernaerts; X.B. Zhang; G. Vantendeloo; J. Vanlanduyt A structure model and growth-mechanism for multishell carbon nanotubes, Science, Volume 267 (1995) no. 5202, pp. 1334-1338

[13] J.G. Lavin; S. Subramoney; R.S. Ruoff; S. Berber; D. Tomanek Scrolls and nested tubes in multiwall carbon tubes, Carbon, Volume 40 (2001) no. 7, pp. 1123-1130

[14] P.M. Ajayan; T.W. Ebbesen Nanometre-size tubes of carbon, Rep. Progr. Phys., Volume 60 (1997) no. 10, pp. 1025-1062

[15] N.L. Allinger Conformational-analysis. 130. Mm2 – hydrocarbon force-field utilizing V1 and V2 torsional terms, J. Am. Chem. Soc., Volume 99 (1977) no. 25, pp. 8127-8134

[16] N.L. Allinger; Y.H. Yuh; J.H. Lii Molecular mechanics – the Mm3 force-field for hydrocarbons. 1, J. Am. Chem. Soc., Volume 111 (1989) no. 23, pp. 8551-8566

[17] S.L. Mayo; B.D. Olafson; W.A. Goddard Dreiding – a generic force-field for molecular simulations, J. Phys. Chem., Volume 94 (1990) no. 26, pp. 8897-8909

[18] Y.J. Guo; N. Karasawa; W.A. Goddard Prediction of fullerene packing in C60 and C70 crystals, Nature, Volume 351 (1991) no. 6326, pp. 464-467

[19] R.E. Tuzun; D.W. Noid; B.G. Sumpter; R.C. Merkle Dynamics of fluid flow inside carbon nanotubes, Nanotechnology, Volume 7 (1996) no. 3, pp. 241-246

[20] R.E. Tuzun; D.W. Noid; B.G. Sumpter; R.C. Merkle Dynamics of He/C-60 flow inside carbon nanotubes, Nanotechnology, Volume 8 (1997) no. 3, pp. 112-118

[21] G.C. Abell Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B, Volume 31 (1985) no. 10, pp. 6184-6196

[22] J. Tersoff New empirical-model for the structural-properties of silicon, Phys. Rev. Lett., Volume 56 (1986) no. 6, pp. 632-635

[23] J. Tersoff New empirical-approach for the structure and energy of covalent systems, Phys. Rev. B, Volume 37 (1988) no. 12, pp. 6991-7000

[24] J. Tersoff Empirical interatomic potential for carbon, with applications to amorphous-carbon, Phys. Rev. Lett., Volume 61 (1988) no. 25, pp. 2879-2882

[25] J. Tersoff Modeling solid-state chemistry – interatomic potentials for multicomponent systems, Phys. Rev. B, Volume 39 (1989) no. 8, pp. 5566-5568

[26] D.W. Brenner Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films, Phys. Rev. B, Volume 42 (1990) no. 15, pp. 9458-9471

[27] D.W. Brenner; J.A. Harrison; C.T. White; R.J. Colton Molecular-dynamics simulations of the nanometer-scale mechanical-properties of compressed buckminsterfullerene, Thin Solid Films, Volume 206 (1991) no. 1–2, pp. 220-223

[28] D.H. Robertson; D.W. Brenner; C.T. White On the way to fullerenes – molecular-dynamics study of the curling and closure of graphitic ribbons, J. Phys. Chem., Volume 96 (1992) no. 15, pp. 6133-6135

[29] D.H. Robertson; D.W. Brenner; J.W. Mintmire Energetics of nanoscale graphitic tubules, Phys. Rev. B, Volume 45 (1992) no. 21, pp. 12592-12595

[30] D.H. Robertson; D.W. Brenner; C.T. White Temperature-dependent fusion of colliding C-60 fullerenes from molecular-dynamics simulations, J. Phys. Chem., Volume 99 (1995) no. 43, pp. 15721-15724

[31] J.A. Harrison; C.T. White; R.J. Colton; D.W. Brenner Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces, Surface Sci., Volume 271 (1992) no. 1–2, pp. 57-67

[32] J.A. Harrison; C.T. White; R.J. Colton; D.W. Brenner Molecular-dynamics simulations of atomic-scale friction of diamond surfaces, Phys. Rev. B, Volume 46 (1992) no. 15, pp. 9700-9708

[33] J.A. Harrison; R.J. Colton; C.T. White; D.W. Brenner Effect of atomic-scale surface-roughness on friction – a molecular-dynamics study of diamond surfaces, Wear, Volume 168 (1993) no. 1–2, pp. 127-133

[34] J.A. Harrison; C.T. White; R.J. Colton; D.W. Brenner Effects of chemically-bound, flexible hydrocarbon species on the frictional-properties of diamond surfaces, J. Phys. Chem., Volume 97 (1993) no. 25, pp. 6573-6576

[35] J.A. Harrison; C.T. White; R.J. Colton; D.W. Brenner Atomistic simulations of friction at sliding diamond interfaces, Mrs Bulletin, Volume 18 (1993) no. 5, pp. 50-53

[36] J.A. Harrison; D.W. Brenner Simulated tribochemistry – an atomic-scale view of the wear of diamond, J. Am. Chem. Soc., Volume 116 (1994) no. 23, pp. 10399-10402

[37] J.A. Harrison; C.T. White; R.J. Colton; D.W. Brenner Investigation of the atomic-scale friction and energy-dissipation in diamond using molecular-dynamics, Thin Solid Films, Volume 260 (1995) no. 2, pp. 205-211

[38] K.J. Tupper; D.W. Brenner Atomistic simulations of frictional wear in self-assembled monolayers, Abstr. Papers Am. Chem. Soc., Volume 206 (1993), p. 172-POLY

[39] K.J. Tupper; D.W. Brenner Molecular-dynamics simulations of interfacial dynamics in self-assembled monolayers, Abstr. Papers Am. Chem. Soc., Volume 206 (1993), p. 72-COMP

[40] K.J. Tupper; D.W. Brenner Molecular-dynamics simulations of friction in self-assembled monolayers, Thin Solid Films, Volume 253 (1994) no. 1–2, pp. 185-189

[41] D.W. Brenner, 2001, unpublished

[42] D.W. Brenner The art and science of an analytic potential, Phys. Status Solidi B, Volume 217 (2000) no. 1, pp. 23-40

[43] D.G. Pettifor; Oleinik Analytic bond-order potentials beyond Tersoff–Brenner. II. Application to the hydrocarbons, Phys. Rev. B, Volume 59 (1999) no. 13, p. 8500

[44] D.G. Pettifor; Oleinik Bounded analytic bond-order potentials for sigma and pi bonds, Phys. Rev. Lett., Volume 84 (2000) no. 18, pp. 4124-4127

[45] L.A. Girifalco; R.A. Lad Energy of cohesion, compressibility and the potential energy functions of the graphite system, J. Chem. Phys., Volume 25 (1956) no. 4, pp. 693-697

[46] L.A. Girifalco Molecular-properties of C-60 in the gas and solid-phases, J. Phys. Chem., Volume 96 (1992) no. 2, pp. 858-861

[47] L.A. Girifalco; M. Hodak; R.S. Lee Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Phys. Rev. B, Volume 62 (2000) no. 19, pp. 13104-13110

[48] Y. Wang; D. Tomanek; G.F. Bertsch Stiffness of a solid composed of C60 clusters, Phys. Rev. B, Volume 44 (1991) no. 12, pp. 6562-6565

[49] D. Qian; W.K. Liu; R.S. Ruoff Mechanics of C60 in nanotubes, J. Phys. Chem. B, Volume 105 (2001), pp. 10753-10758

[50] M. Hanfland; H. Beister; K. Syassen Graphite under pressure – equation of state and 1st-order Raman modes, Phys. Rev. B, Volume 39 (1989) no. 17, pp. 12598-12603

[51] J.C. Boettger All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite, Phys. Rev. B, Volume 55 (1997) no. 17, pp. 11202-11211

[52] A.N. Kolmogorov; V.H. Crespi Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes, Phys. Rev. Lett., Volume 85 (2000) no. 22, pp. 4727-4730

[53] M.F. Yu; M.J. Dyer; J. Chen; D. Qian; W.K. Liu; R.S. Ruoff Locked twist in multi-walled carbon nanotube ribbons, Phys. Rev. B, Volume 64 (2001), p. 241403R

[54] O. Lourie; H.D. Wagner Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy, J. Mater. Res., Volume 13 (1998) no. 9, pp. 2418-2422

[55] M.F. Yu; B.S. Files; S. Arepalli; R.S. Ruoff Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., Volume 84 (2000) no. 24, pp. 5552-5555

[56] M.F. Yu; O. Lourie; M.J. Dyer; K. Moloni; T.F. Kelly; R.S. Ruoff Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, Volume 287 (2000) no. 5453, pp. 637-640

[57] E.W. Wong; P.E. Sheehan; C.M. Lieber Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, Volume 277 (1997) no. 5334, pp. 1971-1975

[58] J.P. Salvetat; A.J. Kulik; J.M. Bonard; G.A.D. Briggs; T. Stockli; K. Metenier; S. Bonnamy; F. Beguin; N.A. Burnham; L. Forro Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater., Volume 11 (1999) no. 2, pp. 161-165

[59] J.P. Salvetat; G.A.D. Briggs; J.M. Bonard; R.R. Bacsa; A.J. Kulik; T. Stockli; N.A. Burnham; L. Forro Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett., Volume 82 (1999) no. 5, pp. 944-947

[60] M.M.J. Treacy; T.W. Ebbesen; J.M. Gibson Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, Volume 381 (1996) no. 6584, pp. 678-680

[61] A. Krishnan; E. Dujardin; T.W. Ebbesen; P.N. Yianilos; M.M.J. Treacy Young's modulus of single-walled nanotubes, Phys. Rev. B, Volume 58 (1998) no. 20, pp. 14013-14019

[62] P. Poncharal; Z.L. Wang; D. Ugarte; W.A. de Heer Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, Volume 283 (1999) no. 5407, pp. 1513-1516

[63] M.F. Yu; M.J. Dyer; J. Chen; K. Bray Multiprobe nanomanipulation and functional assembly of nanomaterials inside a scanning electron microscope, International Conference IEEE-NANO2001, Maui, 2001

[64] D.A. Dikin; X. Chen; W. Ding; G.J. Wagner; R.S. Ruoff Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation, J. Appl. Phys., Volume 93 (2003), p. 226

[65] G. Overney; W. Zhong; D. Tomanek Structural rigidity and low-frequency vibrational-modes of long carbon tubules, Z. Phys. D, Volume 27 (1993) no. 1, pp. 93-96

[66] G.G. Tibbetts Why are carbon filaments tubular, J. Crystal Growth, Volume 66 (1984) no. 3, pp. 632-638

[67] G.H. Gao; T. Cagin; W.A. Goddard Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes, Nanotechnology, Volume 9 (1998) no. 3, pp. 184-191

[68] B.I. Yakobson; C.J. Brabec; J. Bernholc Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., Volume 76 (1996) no. 14, pp. 2511-2514

[69] S. Timoshenko; J. Gere Theory of of Elastic Stability, McGraw-Hill, New York, 1988

[70] J.P. Lu Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., Volume 79 (1997) no. 7, pp. 1297-1300

[71] N. Yao; V. Lordi Young's modulus of single-walled carbon nanotubes, J. Appl. Phys., Volume 84 (1998) no. 4, pp. 1939-1943

[72] E. Hernandez; C. Goze; P. Bernier; A. Rubio Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett., Volume 80 (1998) no. 20, pp. 4502-4505

[73] X. Zhou; J.J. Zhou; Z.C. Ou-Yang Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B, Volume 62 (2000) no. 20, pp. 13692-13696

[74] S. Govindjee; J.L. Sackman On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Commun., Volume 110 (1999) no. 4, pp. 227-230

[75] V.M. Harik Mechanics of carbon nanotubes: applicability of the continuum-beam models, Comput. Mater. Sci., Volume 24 (2002) no. 3, pp. 328-342

[76] V.M. Harik Ranges of applicability for the continuum-beam model in the mechanics of carbon-nanotubes and nanorods, Solid State Commun., Volume 120 (2001) no. 331–335

[77] C.Q. Ru Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube, J. Appl. Phys., Volume 87 (2000) no. 10, pp. 7227-7231

[78] C.Q. Ru Effective bending stiffness of carbon nanotubes, Phys. Rev. B, Volume 62 (2000) no. 15, pp. 9973-9976

[79] C.Q. Ru Column buckling of multiwalled carbon nanotubes with interlayer radial displacements, Phys. Rev. B, Volume 62 (2000) no. 24, pp. 16962-16967

[80] C.Q. Ru Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips, J. Appl. Phys., Volume 89 (2001) no. 6, pp. 3426-3433

[81] C.Q. Ru Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium, J. Mech. Phys. Solids, Volume 49 (2001) no. 6, pp. 1265-1279

[82] C.Q. Ru Elastic buckling of single-walled carbon nanotube ropes under high pressure, Phys. Rev. B, Volume 62 (2000) no. 15, pp. 10405-10408

[83] T. Belytschko; W.K. Liu; B. Moran Nonlinear Finite Elements for Continua and Structures, Wiley, 2000

[84] E.B. Tadmor; M. Ortiz; R. Phillips Quasicontinuum analysis of defects in solids, Philos. Mag. A, Volume 73 (1996) no. 6, pp. 1529-1563

[85] F. Milstein Crystal elasticity (M.J. Sewell, ed.), Mechanics of Solids, Pergamon Press, Oxford, 1982

[86] J.L. Ericksen Phase Transformations and Material Instabilities in Solids (M. Gurtin, ed.), Academic Press, New York, 1984

[87] C.S.G. Cousins Inner elasticity, J. Phys. C, Volume 11 (1978) no. 24, pp. 4867-4879

[88] P. Zhang; Y. Huang; H. Gao; K.C. Hwang Fracture nucleation in single-wall carbon nanotubes under tension: A continuum analysis incorporating interatomic potentials, J. Appl. Mech., Volume 69 (2002) no. 4, pp. 454-458

[89] P. Zhang; Y. Huang; P.H. Geubelle; P. Klein; K.C. Hwang The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials, Int. J. Solids Structures, Volume 39 (2002) no. 13–14, pp. 3893-3906

[90] M. Arroyo; T. Belytschko An atomistic-based membrane for crystalline films one atom thick, J. Mech. Phys. Solids, Volume 50 (2002), pp. 1941-1977

[91] D. Qian, Effect of relaxation on the elastic properties of carbon nanotube, 2003, in preparation

[92] B.I. Yakobson; R.E. Smalley Fullerene nanotubes: C-1000000 and beyond, Am. Sci., Volume 85 (1997) no. 4, pp. 324-337

[93] B.I. Yakobson; P. Avouris Mechanical properties of carbon nanotubes, Carbon Nanotubes, 2001, pp. 287-327

[94] J. Bernholc; C. Brabec; M.B. Nardelli; A. Maiti; C. Roland; B.I. Yakobson Theory of growth and mechanical properties of nanotubes, Appl. Phys. A, Volume 67 (1998) no. 1, pp. 39-46

[95] D. Qian; W.K. Liu; R.S. Ruoff Bent and kinked multi-shell Carbon nanotubes-treating the interlayer potential more realistically, 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conferences, Denver, CO, 2002

[96] D. Qian; W.K. Liu; S. Subramoney; R.S. Ruoff Effect of interlayer interaction on the mechanical deformation of multiwalled carbon nanotube, J. Nanosci. Nanotechnol., Volume 3 (2003) no. 1, pp. 185-191

[97] J.F. Despres; E. Daguerre; K. Lafdi Flexibility of graphene layers in carbon nanotubes, Carbon, Volume 33 (1995) no. 1, pp. 87-89

[98] S. Iijima; C. Brabec; A. Maiti; J. Bernholc Structural flexibility of carbon nanotubes, J. Chem. Phys., Volume 104 (1996) no. 5, pp. 2089-2092

[99] R.S. Ruoff; D.C. Lorents; R. Laduca; S. Awadalla; S. Weathersby; K. Parvin; S. Subramoney Proc. Electrochem. Soc., 95–10 (1995), pp. 557-562

[100] S. Subramoney; R.S. Ruoff; R. Laduca; S. Awadalla; K. Parvin Proc. Electrochem. Soc., 95–10 (1995), pp. 563-569

[101] M.R. Falvo; G.J. Clary; R.M. Taylor; V. Chi; F.P. Brooks; S. Washburn; R. Superfine Bending and buckling of carbon nanotubes under large strain, Nature, Volume 389 (1997) no. 6651, pp. 582-584

[102] T. Hertel; R. Martel; P. Avouris Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B, Volume 102 (1998) no. 6, pp. 910-915

[103] O. Lourie; D.M. Cox; H.D. Wagner Buckling and collapse of embedded carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 8, pp. 1638-1641

[104] R.S. Ruoff; J. Tersoff; D.C. Lorents; S. Subramoney; B. Chan Radial deformation of carbon nanotubes by Van-Der-Waals forces, Nature, Volume 364 (1993) no. 6437, pp. 514-516

[105] J. Tersoff; R.S. Ruoff Structural-properties of a carbon-nanotube crystal, Phys. Rev. Lett., Volume 73 (1994) no. 5, pp. 676-679

[106] M.J. Lopez; A. Rubio; J.A. Alonso; L.C. Qin; S. Iijima Novel polygonized single-wall carbon nanotube bundles, Phys. Rev. Lett., Volume 86 (2001) no. 14, pp. 3056-3059

[107] N.G. Chopra; L.X. Benedict; V.H. Crespi; M.L. Cohen; S.G. Louie; A. Zettl Fully collapsed carbon nanotubes, Nature, Volume 377 (1995) no. 6545, pp. 135-138

[108] L.X. Benedict; N.G. Chopra; M.L. Cohen; A. Zettl; S.G. Louie; V.H. Crespi Microscopic determination of the interlayer binding energy in graphite, Chem. Phys. Lett., Volume 286 (1998) no. 5–6, pp. 490-496

[109] T. Hertel; R.E. Walkup; P. Avouris Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B, Volume 58 (1998) no. 20, pp. 13870-13873

[110] P. Avouris; T. Hertel; R. Martel; T. Schmidt; H.R. Shea; R.E. Walkup Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surface Sci., Volume 141 (1999) no. 3–4, pp. 201-209

[111] M.F. Yu; M.J. Dyer; R.S. Ruoff Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study, J. Appl. Phys., Volume 89 (2001) no. 8, pp. 4554-4557

[112] M.F. Yu; T. Kowalewski; R.S. Ruoff Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy, Phys. Rev. Lett., Volume 86 (2001) no. 1, pp. 87-90

[113] V. Lordi; N. Yao Radial compression and controlled cutting of carbon nanotubes, J. Chem. Phys., Volume 109 (1998) no. 6, pp. 2509-2512

[114] W.D. Shen; B. Jiang; B.S. Han; S.S. Xie Investigation of the radial compression of carbon nanotubes with a scanning probe microscope, Phys. Rev. Lett., Volume 84 (2000) no. 16, pp. 3634-3637

[115] M.F. Yu; T. Kowalewski; R.S. Ruoff Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force, Phys. Rev. Lett., Volume 85 (2000) no. 7, pp. 1456-1459

[116] S.A. Chesnokov; V.A. Nalimova; A.G. Rinzler; R.E. Smalley; J.E. Fischer Mechanical energy storage in carbon nanotube springs, Phys. Rev. Lett., Volume 82 (1999) no. 2, pp. 343-346

[117] B.T. Kelly Physics of Graphite, Applied Science, London, 1981

[118] J. Tang; L.C. Qin; T. Sasaki; M. Yudasaka; A. Matsushita; S. Iijima Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett., Volume 85 (2000) no. 9, pp. 1887-1889

[119] J. Tang; L.C. Qin; T. Sasaki; M. Yudasaka; A. Matsushita; S. Iijima Structure and property changes of single-walled carbon nanotubes under pressure, Synthetic Metals, Volume 121 (2001) no. 1–3, pp. 1245-1246

[120] J. Tang; L.C. Qin; T. Sasaki; M. Yudasaka; A. Matsushita; S. Iijima Revealing properties of single-walled carbon nanotubes under high pressure, J. Phys. Condensed Matter., Volume 14 (2002) no. 44, pp. 10575-10578

[121] S. Iijima Helical microtubules of graphitic carbon, Nature, Volume 354 (1991) no. 6348, pp. 56-58

[122] T.W. Ebbesen; P.M. Ajayan Large-scale synthesis of carbon nanotubes, Nature, Volume 358 (1992) no. 6383, pp. 220-222

[123] S. Iijima; P.M. Ajayan; T. Ichihashi Growth-model for carbon nanotubes, Phys. Rev. Lett., Volume 69 (1992) no. 21, pp. 3100-3103

[124] A. Thess; R. Lee; P. Nikolaev; H.J. Dai; P. Petit; J. Robert; C.H. Xu; Y.H. Lee; S.G. Kim; A.G. Rinzler; D.T. Colbert; G.E. Scuseria; D. Tomanek; J.E. Fischer; R.E. Smalley Crystalline ropes of metallic carbon nanotubes, Science, Volume 273 (1996) no. 5274, pp. 483-487

[125] T. Guo; P. Nikolaev; A. Thess; D.T. Colbert; R.E. Smalley Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., Volume 243 (1995) no. 1–2, pp. 49-54

[126] J. Kong; H.T. Soh; A.M. Cassell; C.F. Quate; H.J. Dai Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature, Volume 395 (1998) no. 6705, pp. 878-881

[127] A.M. Cassell; J.A. Raymakers; J. Kong; H.J. Dai Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B, Volume 103 (1999) no. 31, pp. 6484-6492

[128] W.Z. Li; S.S. Xie; L.X. Qian; B.H. Chang; B.S. Zou; W.Y. Zhou; R.A. Zhao; G. Wang Large-scale synthesis of aligned carbon nanotubes, Science, Volume 274 (1996) no. 5293, pp. 1701-1703

[129] M.B. Nardelli; B.I. Yakobson; J. Bernholc Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 21, pp. 4656-4659

[130] D.A. Walters; L.M. Ericson; M.J. Casavant; J. Liu; D.T. Colbert; K.A. Smith; R.E. Smalley Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett., Volume 74 (1999) no. 25, pp. 3803-3805

[131] Z.W. Pan; S.S. Xie; L. Lu; B.H. Chang; L.F. Sun; W.Y. Zhou; G. Wang; D.L. Zhang Tensile tests of ropes of very long aligned multiwall carbon nanotubes, Appl. Phys. Lett., Volume 74 (1999) no. 21, pp. 3152-3154

[132] H.D. Wagner; O. Lourie; Y. Feldman; R. Tenne Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett., Volume 72 (1998) no. 2, pp. 188-190

[133] F. Li; H.M. Cheng; S. Bai; G. Su; M.S. Dresselhaus Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes, Appl. Phys. Lett., Volume 77 (2000) no. 20, pp. 3161-3163

[134] B.I. Yakobson; M.P. Campbell; C.J. Brabec; J. Bernholc High strain rate fracture and C-chain unraveling in carbon nanotubes, Comput. Mater. Sci., Volume 8 (1997) no. 4, pp. 341-348

[135] T. Belytschko; S.P. Xiao; G.C. Schartz; R.S. Ruoff Atomistic simulation of nanotube fracture, Phys. Rev. B, Volume 65 (2002) no. 235430

[136] M.B. Nardelli; B.I. Yakobson; J. Bernholc Mechanism of strain release in carbon nanotubes, Phys. Rev. B, Volume 57 (1998) no. 8, p. R4277-R4280

[137] D. Srivastava; M. Menon; K.J. Cho Nanoplasticity of single-wall carbon nanotubes under uniaxial compression, Phys. Rev. Lett., Volume 83 (1999) no. 15, pp. 2973-2976

[138] C.Y. Wei; D. Srivastava; K.J. Cho Molecular dynamics study of temperature dependent plastic collapse of carbon nanotubes under axial compression, Comput. Modeling Engrg. Sci., Volume 3 (2002), p. 255

[139] D. Srivastava; C.Y. Wei; K.J. Cho Computational nanomechanics of carbon nanotubes and composites (submitted), ASME Appl. Mech. Rev. (2003)

[140] B.I. Yakobson Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes, Appl. Phys. Lett., Volume 72 (1998) no. 8, pp. 918-920

[141] P.H. Zhang; P.E. Lammert; V.H. Crespi Plastic deformations of carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998) no. 24, pp. 5346-5349

[142] P.H. Zhang; V.H. Crespi Nucleation of carbon nanotubes without pentagonal rings, Phys. Rev. Lett., Volume 83 (1999) no. 9, pp. 1791-1794

[143] B.I. Yakobson Dynamic topology and yield strength of carbon nanotubes, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Electrochemical Society, Pennington, NJ, 1997

[144] H.J. Dal; A.G. Rinzler; P. Nikolaev; A. Thess; D.T. Colbert; R.E. Smalley Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., Volume 260 (1996) no. 3–4, pp. 471-475

[145] J. Cumings; A. Zettl Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science, Volume 289 (2000) no. 5479, pp. 602-604

[146] M.F. Yu; B.I. Yakobson; R.S. Ruoff Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes, J. Phys. Chem. B, Volume 104 (2000) no. 37, pp. 8764-8767

[147] D. Qian; W.K. Liu; R.S. Ruoff Load transfer mechanism in carbon nanotube ropes, Composites Sci. Techn., Volume 63 (2003) no. 11, pp. 1561-1569

[148] D. Shi; J. Lian; P. He; L.M. Wang; W.J.V. Oojj; M. Schulz; D. Mast Plasma deposition of ultrathin polymer films on carbon nanotubes, Appl. Phys. Lett., Volume 81 (2002) no. 27, pp. 5216-5218

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Synthesis of single-walled carbon nanotubes, their ropes and books

Bilu Liu; Qingfeng Liu; Wencai Ren; ...

C. R. Phys (2010)


Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches

Sébastien Demoustier; Eric Minoux; Matthieu Le Baillif; ...

C. R. Phys (2008)


Exploring the electronic band structure of individual carbon nanotubes under 60 T

Sébastien Nanot; Walter Escoffier; Benjamin Lassagne; ...

C. R. Phys (2009)