Comptes Rendus
Infrared (2–12 μm) solid-state laser sources: a review
[Sources laser solide infrarouge (2–12 μm) : une revue]
Comptes Rendus. Physique, Volume 8 (2007) no. 10, pp. 1100-1128.

Le domaine infrarouge est très intéressant pour de nombreuses applications grâce à deux caractéristiques particulières : (i) il contient plusieurs fenêtres de transmission de l'atmosphère, (ii) il correspond à la région ‘d'empreintes digitales’ du spectre électromagnétique où de nombreuses molécules présentent de fortes raies rovibrationnelles d'absorption. Dans de nombreux cas, ces applications (telles que la chirurgie laser, l'analyse de gaz, la détection à distance, la spectrocopie non linéaire, les contre-mesures) nécessitent de disposer de rayonnement cohérent tel que celui émis par une source laser. Dans ce contexte, le choix de la bonne filière est un paramètre clef. En fonction de l'application sélectionnée, il peut être requis que la source délivre un rayonnement accordable, une faible largeur de raie, un faisceau proche de la limite de diffraction, une émission continue ou impulsionnelle, etc. Cet article passe brièvement en revue les principales technologies, restreintes aux sources continues ou impulsionnelles nanoseconde émettant dans l'intervalle 2–12 μm. Les filières technologiques considérées incluent les lasers solide et fibre dopés aux ions terre-rare ou métal de transition, les lasers semi-conducteurs et les sources paramétriques optiques. Les avantages et les inconvénients de ces technologies sont ensuite discutés rapidement dans le contexte de quelques applications sélectionnées.

The infrared domain is very attractive for many applications owing to two unique features: (i) it contains several atmospheric transparency windows, (ii) it corresponds to the ‘molecular fingerprint’ region of the electromagnetic spectrum where various molecules have strong rovibrational absorption lines. In many cases, these applications (e.g. laser surgery, trace gas monitoring, remote sensing, nonlinear spectroscopy, countermeasures, …) require coherent light radiation as the one emitted by a laser source. In this context, the choice of the proper technology is a key issue. Depending on the selected application, it could be required the source to deliver tunable emission, narrow linewidth, nearly diffraction limited beam, pulsed or continuous-wave (CW) radiation, etc. This article briefly reviews the main technologies, restricted to CW and nanosecond pulsed sources emitting in the 2–12 μm range. The technologies considered include rare-earth and transition-metal doped bulk and fiber lasers, semiconductor lasers, and optical parametric sources. Pros and cons of these technologies are then briefly discussed in the context of several selected applications.

Publié le :
DOI : 10.1016/j.crhy.2007.09.010
Keywords: Infrared, Laser, Rare-earth, Transition metal, Semiconductor laser, Quantum cascade laser, Optical parametric source
Mot clés : Infrarouge, Laser, Terre-rare, Métal de transition, Laser à semi-conducteur, Laser à cascade quantique, Source paramétrique
Antoine Godard 1

1 ONERA – Office national d'études et de recherches aérospatiales, chemin de la Hunière, 91761 Palaiseau cedex, France
@article{CRPHYS_2007__8_10_1100_0,
     author = {Antoine Godard},
     title = {Infrared (2{\textendash}12 \ensuremath{\mu}m) solid-state laser sources: a review},
     journal = {Comptes Rendus. Physique},
     pages = {1100--1128},
     publisher = {Elsevier},
     volume = {8},
     number = {10},
     year = {2007},
     doi = {10.1016/j.crhy.2007.09.010},
     language = {en},
}
TY  - JOUR
AU  - Antoine Godard
TI  - Infrared (2–12 μm) solid-state laser sources: a review
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 1100
EP  - 1128
VL  - 8
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.09.010
LA  - en
ID  - CRPHYS_2007__8_10_1100_0
ER  - 
%0 Journal Article
%A Antoine Godard
%T Infrared (2–12 μm) solid-state laser sources: a review
%J Comptes Rendus. Physique
%D 2007
%P 1100-1128
%V 8
%N 10
%I Elsevier
%R 10.1016/j.crhy.2007.09.010
%G en
%F CRPHYS_2007__8_10_1100_0
Antoine Godard. Infrared (2–12 μm) solid-state laser sources: a review. Comptes Rendus. Physique, Volume 8 (2007) no. 10, pp. 1100-1128. doi : 10.1016/j.crhy.2007.09.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.010/

[1] Solid-State Mid-Infrared Sources (I.T. Sorokina; K.L. Vodopyanov, eds.), Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003

[2] J. Wu; Z. Yao; J. Zong; S. Jiang Highly efficient high-power thulium-doped germanate glass fiber laser, Opt. Lett., Volume 32 (2007), pp. 638-640

[3] D.G. Lancaster; A. Sabella; A. Hemming; S. Bennetts; S.D. Jackson Power-scalable thulium and holmium fibre lasers pumped by 793 nm diode lasers, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, WE5)

[4] IPG Photonics http://www.ipgphotonics.com/

[5] K.S. Lai; P.B. Phua; R.F. Wu; Y.L. Lim; E. Lau; S.W. Toh; B.T. Toh; A. Chng 120-W continuous-wave diode-pumped Tm:YAG laser, Opt. Lett., Volume 25 (2000), pp. 1591-1593

[6] A. Dergachev; K. Wall; P.F. Moulton A CW side-pumped Tm:YLF laser (M. Ferman; L. Marshall, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 343-346

[7] A.C. Sullivan; A. Zakel; G.J. Wagner; D. Gwin; B. Tiemann; R.C. Stoneman; A.I.R. Malm High power Q-switched Tm:YALO lasers (G.J. Quarles, ed.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 94, Optical Society of America, 2004, pp. 329-332

[8] M. Eichhorn Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers, Opt. Lett., Volume 32 (2007), pp. 1056-1058

[9] N. Coluccelli; D. Gatti; G. Galzerano; F. Cornacchia; D. Parisi; A. Toncelli; M. Tonelli; P. Laporta Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation, Appl. Phys. B, Volume 85 (2006), pp. 553-555

[10] J.F. Pinto; L. Esterowitz; G.H. Rosenblatt Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm, Opt. Lett., Volume 19 (1994), pp. 883-885

[11] R.C. Stoneman; L. Esterowitz Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett., Volume 15 (1990), pp. 486-488

[12] R.C. Stoneman; L. Esterowitz Efficient 1.94 μm Tm:YALO laser, IEEE J. Sel. Topics Quantum Electron., Volume 1 (1995), pp. 78-80

[13] L. Fornasiero; N. Berner; B.-M. Dicks; E. Mix; V. Peters; K. Petermann; G. Hubert Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2 μm (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 450-453

[14] W.A. Clarkson; N.P. Barnes; P.W. Turner; J. Nilsson; D.C. Hanna High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm, Opt. Lett., Volume 27 (2002), pp. 1989-1991

[15] E. Sorokin; A.N. Alpatiev; I.T. Sorokina; A.I. Zagumennyi; I.A. Shcherbakov Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser (M. Ferman; L. Marshall, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 347-350

[16] D.Y. Shen; J.K. Sahu; W.A. Clarkson; J. Nilsson; D.C. Hanna High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm, Opt. Express, Volume 14 (2006), pp. 6084-6090

[17] B. Jean; T. Bende Mid-IR laser application in medicine (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin Heidelberg, 2003, pp. 511-544

[18] J. Yu; B.C. Trieu; E.A. Modlin; U.N. Singh; M.J. Kavaya; S. Chen; Y. Bai; P.J. Petzar; M. Petros 1 J/pulse Q-switched 2 μm solid-state laser, Opt. Lett., Volume 31 (2006), pp. 462-464

[19] T.Y. Fan; G. Huber; R.L. Byer; P. Mitzscherlich Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG, IEEE J. Quantum Electron., Volume 24 (1988), pp. 924-933

[20] P.A. Budni; L.A. Pomeranz; M.L. Lemons; C.A. Miller; J.R. Mosto; E.P. Chicklis Efficient mid-infrared laser using 1.9 μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 723-728

[21] E. Lippert; S. Nicolas; G. Arisholm; K. Stenersen; G. Rustad Midinfrared laser source with high power and beam quality, Appl. Opt., Volume 45 (2006), pp. 3839-3845

[22] C.D. Nabors; J. Ochoa; T.Y. Fan; A. Sanchez; H.K. Choi; G.W. Tumer Ho:YAG laser pumped by 1.9 μm diode lasers, IEEE J. Quantum Electron., Volume 31 (1995), pp. 1603-1605

[23] A. Dergachev; P. Moulton; T.E. Drake High power, high energy Ho:YLF laser pumped with Tm:fiber laser (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 608-612

[24] Y.D. Zavartzev; V.V. Osiko; S.G. Semenkov; P.A. Studenikin; A.F. Umyskov Cascade laser oscillation due to Ho3+ ions in a (Cr,Yb,Ho):YSGG yttrium–scandium–gallium garnet crystal, Sov. J. Quantum Electron., Volume 23 (1993), pp. 312-316 (transl. from: Kvan. Elektron., 20, 1993, pp. 366-370)

[25] S.D. Jackson Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm, Opt. Lett., Volume 29 (2004), pp. 334-336

[26] A. Diening; S. Kück Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet, J. Appl. Phys., Volume 87 (2000), pp. 4063-4068

[27] X. Zhu; R. Jain 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser, Opt. Lett., Volume 32 (2007), pp. 26-28

[28] A. Dergachev; P. Moulton Tunable CW Er:YLF diode-pumped laser, Advanced Solid-State Photonics, Optical Society of America, 2003, pp. 5-7 (Technical Digest)

[29] A. Zajac; M. Skorczakowski; J. Swiderski; P. Nyga Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications, Opt. Express, Volume 12 (2004), pp. 5125-5130

[30] H. Voss; F. Massmann Diode-pumped Q-switched erbium lasers with short pulse duration (R.C. Pollock; W.R. Bosenberg, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 10, Optical Society of America, 1997, pp. 217-221

[31] L.D. Deloach; R.H. Page; G.D. Wilke; S.A. Payne; W.F. Krupke Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron., Volume 32 (1996), pp. 885-895

[32] I.T. Sorokina Cr2+-doped II–VI materials for lasers and nonlinear optics, Opt. Mat., Volume 26 (2004), pp. 395-412

[33] E. Sorokin; S. Naumov; I.T. Sorokina Ultrabroadband infrared solide-state lasers, IEEE J. Sel. Topics Quantum Electron., Volume 11 (2005), pp. 690-712

[34] A.V. Podlipensky; V.G. Shcherbitsky; N.V. Kuleshov; V.I. Levchenko; V.N. Yakimovich; M. Mond; E. Heumann; G. Huber; H. Kretschmann; S. Kück Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals, Appl. Phys. B, Volume 72 (2001), pp. 253-255

[35] S.B. Mirov; V.V. Fedorov; K. Graham; I.S. Moskalev; V.V. Badikov; V. Panyutin Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers, Opt. Let., Volume 27 (2002), pp. 909-911

[36] M. Mond; D. Albrecht; E. Heumann; G. Huber; S. Kück; V.I. Levchenko; V.N. Yakimovich; V.G. Shcherbitsky; V.E. Kisel; N.V. Kuleshov; M. Rattunde; J. Schmitz; R. Kiefer; J. Wagner 1.9 μm and 2.0 μm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe, Opt. Let., Volume 27 (2002), pp. 1034-1036

[37] U. Demirbas; A. Sennaroglu Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm, Opt. Lett., Volume 31 (2006), pp. 2293-2295

[38] I.T. Sorokina; E. Sorokin Chirped-mirror dispersion controlled femtosecond Cr:ZnSe laser, Advanced Solid-State Photonics, Optical Society of America, 2007 OSA Technical Digest Series (CD), paper WA7

[39] G.J. Wagner; T.J. Carrig Power scaling of Cr2+:ZnSe lasers (C. Marshall, ed.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 50, Optical Society of America, 2001, pp. 506-510

[40] A. Zakel; G.J. Wagner; A.C. Sullivan; J.F. Wenzel; W.J. Alford; T.J. Carrig High-brightness, rapidly-tunable Cr:ZnSe lasers (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 723-727

[41] T.J. Carrig; A.K. Hankla; G.J. Wagner; C.B. Rawle; I.T. McKinnie Tunable infrared laser sources for DIAL (G.W. Kamerman, ed.), Laser Radar Technology and Applications VII, Proc. SPIE, vol. 4723, 2002, pp. 147-155

[42] E. Sorokin; I.T. Sorokina; C. Fischer; M.W. Sigrist Widely tunable Cr2+:ZnSe laser source for trace-gas sensing (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 826-830

[43] A. Zakel; G.J. Wagner; W.J. Alford; T.J. Carrig High-power, rapidly-tunable ZnGeP2 intracavity optical parametric oscillator, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThY5)

[44] A. Zakel; G.J. Wagner; W.J. Alford; T.J. Carrig High-power, rapidly tunable dual band CdSe optical parametric oscillator (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 433-437

[45] V.V. Fedorov; I. Moskalev; L. Luke; A. Gallian; S.B. Mirov Mid-infrared electroluminescence of Cr2+ ions in ZnSe crystals, Advanced Solid-State Photonics, Optical Society of America, 2006 (Technical Digest, WB21)

[46] J. Jaeck; R. Haidar; E. Rosencher; M. Caes; M. Tauvy; S. Collin; N. Bardou; J.L. Pelouard; F. Pardo; P. Lemasson Room-temperature electroluminescence in the mid-infrared (2–3 μm) from bulk chromium-doped ZnSe, Opt. Lett., Volume 31 (2006), pp. 3051-3053

[47] V.V. Fedorov; S.B. Mirov; A. Gallian; D.V. Badikov; M.P. Frolov; Y.V. Korostelin; V.I. Kozlovsky; A.I. Landman; Y.P. Podmar'kov; V.A. Akimov; A.A. Voronov 3.77–5.05 μm tunable solid-state lasers on Fe2+-doped ZnSe crystals operating low and room temperatures, IEEE J. Quantum Electron., Volume 42 (2006), pp. 907-917

[48] A. Joullié; P. Christol; A.N. Baranov; A. Vicet Mid-infrared 2–5 μm heterojunction laser diodes (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 1-59

[49] D.Z. Garbuzov; H. Lee; V. Khalfin; R. Martinelli; J.C. Connolly; G.L. Belenky 2.3–2.7 μm room temperature CW operation of InGaAsSb–AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 794-796

[50] H.K. Choi; G.W. Turner; S.J. Eglash High-power GaInAsSb–AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 μm, IEEE Photon. Technol. Lett., Volume 6 (1994), pp. 7-9

[51] D.Z. Garbuzov; R.U. Martinelli; H. Lee; R.J. Menna; P.K. York; L.A. DiMarco; M.G. Harvey; R.J. Matarese; S.Y. Narayan; J.C. Connolly 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 2931-2933

[52] J.G. Kim; L. Shterengasa; R.U. Martinelli; G.L. Belenky; D.Z. Garbuzov; W.K. Chan Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves, Appl. Phys. Lett., Volume 81 (2002), pp. 3146-3148

[53] M. Garcia; A. Salhi; A. Pérona; Y. Rouillard; C. Sirtori; X. Marcadet; C. Alibert Low threshold high-power room-temperature continuous-wave operation diode laser emitting at 2.26 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 1253-1255

[54] G.L. Belenky; J.G. Kim; L. Shterengas; A. Gourevitch; R.U. Martinelli High-power 2.3 μm laser arrays emitting 10 W CW at room temperature, Electron. Lett., Volume 40 (2004), pp. 737-738

[55] M.T. Kelemen; J. Weber; M. Rattunde; G. Kaufel; J. Schmitz; R. Moritz; M. Mikulla; J. Wagner High-power 1.9 μm diode laser arrays with reduced far-field angle, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 628-630

[56] H.K. Choi; J.N. Walpole; G.W. Turner; M.K. Connors; L.J. Missaggia; M.J. Manfra GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6-W diffraction-limited power, IEEE Photon. Technol. Lett., Volume 10 (1998), pp. 938-940

[57] C. Pfahler; G. Kaufel; M.T. Kelemen; M. Mikulla; M. Rattunde; J. Schmitz; J. Wagner GaSb-based tapered diode lasers at 1.93 μm with 1.5-W nearly diffraction-limited power, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 758-760

[58] J.N. Walpole; H.K. Choi; L.J. Missaggia; Z.L. Liau; M.K. Connors; G.W. Turner; M.J. Manfra; C.C. Cook High-power high-brightness GaInAsSb–AlGaAsSb tapered laser arrays with anamorphic collimating lenses emitting at 2.05 μm, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 1223-1225

[59] E. Geerlings; M. Rattunde; J. Schmitz; G. Kaufel; H. Zappe; J. Wagner Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 1913-1915

[60] M. Hümmer; K. Rößner; A. Benkert; A. Forchel GaInAsSb–AlGaAsSb distributed feedback lasers emitting near 2.4 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 380-382

[61] C. Sirtori; J. Nagle Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared, C. R. Physique, Volume 4 (2003), pp. 639-648

[62] D. Hofstetter; J. Faist High performances quantum cascade lasers and their applications (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 61-96

[63] F. Capasso; C. Gmachl; R. Paiella; A. Tredicucci; A.L. Hutchinson; D.L. Sivco; J.N. Baillargeon; A.Y. Cho; H.C. Liu New frontiers in quantum cascade lasers and applications, IEEE J. Sel. Topics Quantum Electron., Volume 6 (2000), pp. 931-947

[64] I. Vurgaftman; J.R. Meyer Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers, J. Appl. Phys., Volume 99 (2006), p. 123108

[65] S. Slivken; Z. Huang; A. Evans; M. Razeghi High-power (λ9 μm) quantum cascade lasers, Appl. Phys. Lett., Volume 80 (2002), pp. 4091-4093

[66] S. Forget; C. Faugeras; J.-Y. Bengloan; M. Calligaro; O. Parillaud; M. Giovannini; J. Faist; C. Sirtori High-power spatial singlemode quantum cascade lasers at 8.9 μm, Electron. Lett., Volume 41 (2005), pp. 418-419

[67] D. Hofstetter; M. Beck; T. Aellen; J. Faist; U. Oesterle; M. Ilegems; E. Gini; H. Melchior Continuous wave operation of a 9.3 μm quantum cascade laser on Peltier cooler, Appl. Phys. Lett., Volume 78 (2001), pp. 1964-1966

[68] J.S. Yu; S. Slivken; A. Evans; L. Doris; M. Razeghi High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature, Appl. Phys. Lett., Volume 83 (2003), pp. 2503-2505

[69] J.S. Yu; A. Evans; J. David; L. Doris; S. Slivken; M. Razeghi Cavity-length effects of high-temperature high-power continuous-wave characteristics in quantum-cascade lasers, Appl. Phys. Lett., Volume 83 (2003), pp. 5136-5138

[70] S. Blaser, High power and single frequency quantum cascade lasers for chemical sensing, in: 4th Workshop on Quantum Cascade Lasers, Technology and Applications, Freiburg, Germany, 2005

[71] A. Evans; J.S. Yu; S. Slivken; M. Razeghi Continuous-wave operation of λ4.8 μm quantum cascade lasers, Appl. Phys. Lett., Volume 85 (2004), pp. 2166-2168

[72] J.S. Yu; A. Evans; J. David; L. Doris; S. Slivken; M. Razeghi High-power continuous-wave operation of quantum-cascade lasers up to 60 °C, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 747-749

[73] A. Evans; J.S. Yu; S.J. David; L. Doris; K. Mi; S. Slivken; M. Razeghi High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers, Appl. Phys. Lett., Volume 84 (2004), pp. 314-316

[74] J.S. Yu; A. Evans; S. Slivken; S.R. Darvish; M. Razeghi Short wavelength (λ4.3 μm) high-performance continuous-wave quantum-cascade lasers, IEEE Photon. Technol. Lett., Volume 17 (2005), pp. 1154-1156

[75] W.W. Bewley; J.R. Lindle; C.S. Kim; I. Vurgaftman; J.R. Meyer; A.J. Evans; J.S. Yu; S. Slivken; M. Razeghi Beam steering in high-power CW quantum-cascade lasers, IEEE J. Quantum Electron., Volume 41 (2005), pp. 833-841

[76] C. Faugeras; S. Forget; E. Boer-Duchemin; H. Page; J.-Y. Bengloan; O. Parillaud; M. Calligaro; C. Sirtori; M. Giovannini; J. Faist High-power room temperature emission quantum cascade lasers at λ=9 μm, IEEE J. Quantum Electron., Volume 41 (2005), pp. 1430-1438

[77] A. Evans; J. Nguyen; S. Slivken; J.S. Yu; S.R. Darvish; M. Razeghi Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ5.25 μm, Appl. Phys. Lett., Volume 88 (2006), p. 051105

[78] J.S. Yu; S. Slivken; A. Evans; S.R. Darvish; J. Nguyen; M. Razeghi High-power λ9.5 μm quantum-cascade lasers operating above room temperature in continuous-wave mode, Appl. Phys. Lett., Volume 88 (2006), p. 091113

[79] L. Diehl; D. Bour; S. Corzine; J. Zhu; G. Höfler; M. Lončar; M. Troccoli; F. Capasso High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K, Appl. Phys. Lett., Volume 88 (2006), p. 201115

[80] J.S. Yu; A. Evans; S. Slivken; S.R. Darvish; M. Razeghi Temperature dependent characteristics of λ3.8 μm room-temperature continuous-wave quantum-cascade lasers, Appl. Phys. Lett., Volume 88 (2006), p. 251118

[81] A. Wittmann; M. Giovannini; J. Faist; L. Hvozdara; S. Blaser; D. Hofstetter; E. Gini Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies, Appl. Phys. Lett., Volume 89 (2006), p. 141116

[82] S. Slivken; A. Evans; W. Zhang; M. Razeghi High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm, Appl. Phys. Lett., Volume 90 (2007), p. 151115

[83] R. Maulini; D.A. Yarekha; J.-M. Bulliard; M. Giovannini; J. Faist; E. Gini Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser, Opt. Lett., Volume 30 (2006), pp. 2584-2587

[84] K. Kennedy; A.B. Krysa; J.S. Roberts; K.M. Groom; R.A. Hogg; D.G. Revin; L.R. Wilson; J.W. Cockburn High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings, Appl. Phys. Lett., Volume 89 (2006), p. 201117

[85] C. Bauer; P. Geiser; J. Burgmeier; G. Holl; W. Schade Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives, Appl. Phys. B, Volume 85 (2006), pp. 251-256

[86] K.L. Vodopyanov Mid-infrared optical parametric generator with extra-wide (3–19 μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells, J. Opt. Soc. Am. B, Volume 16 (1999), pp. 1579-1586

[87] L.E. Myers; R.C. Eckardt; M.M. Fejer; R.L. Byer; W.R. Bosenberg; J.W. Pierce Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2102-2116

[88] K. Koch; G.T. Moore; E.C. Cheungy Optical parametric oscillation with intracavity difference-frequency mixing, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2268-2273

[89] J.-M. Melkonian; A. Godard; M. Lefebvre; E. Rosencher Pulsed optical parametric oscillators with intracavity optical parametric amplification: a critical study, Appl. Phys. B, Volume 86 (2007), pp. 633-642

[90] J.M. Fukumoto; H. Komine; W.H. Long; E.A. Stappaerts Periodically poled LiNbO3 optical parametric oscillator with intracavity difference frequency mixing (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 245-248

[91] B. Scherrer; I. Ribet; A. Godard; E. Rosencher; M. Lefebvre Dual-cavity doubly resonant optical parametric oscillators: demonstration of pulsed single-mode operation, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 1716-1729

[92] A. Desormeaux; M. Lefebvre; E. Rosencher; J.-P. Huignard Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator, Opt. Lett., Volume 29 (2004), pp. 2887-2889

[93] A. Berrou; A. Godard; E. Rosencher; M. Lefebvre; S. Spiekermann Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)

[94] A. Berrou; A. Godard; M. Lefebvre Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)

[95] H. Ishizuki; T. Taira High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm×5 mm aperture, Opt. Lett., Volume 30 (2005), pp. 2918-2920

[96] G. Mennerat; P. Kupecek High-energy narrow-linewidth tunable source in the mid infrared (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 269-272

[97] J. Saikawa; M. Fujii; H. Ishizuki; T. Taira 52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device, Opt. Lett., Volume 31 (2006), pp. 3149-3151

[98] J. Saikawa; M. Miyazaki; M. Fujii; H. Ishizuki; T. Taira Difference frequency generation in a ZnGeP2 crystal pumped by a large aperture periodically poled MgO:LiNbO3 optical parametric system, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, MB8)

[99] M. Henriksson; M. Tiihonen; V. Pasiskevicius; F. Laurell ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source, Opt. Lett., Volume 31 (2006), pp. 1878-1880

[100] S. Nicolas; Ø. Nordseth; G. Rustad; G. Arisholm High-energy mid-IR source based on two-stage conversion from 1.06 μm (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 417-422

[101] R.K. Shori Recent developments in scaling output energy from erbium-based lasers and their uses as pump sources for MWIR & LWIR OPOs, Laser and Electro-Optics Society Annual Meeting 2004 Conference Proceedings, vol. 2, IEEE, 2004, pp. 805-806

[102] T.H. Allik; J.L. Ahl; S. Chandra; J.A. Hutchinson; W.W. Hovis; J. Fox; L. Newman Refinements and additional characterization of an 8–12 μm tandem OPO design (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 525-528

[103] R.K. Shori, O.M. Stafsudd, N.S. Prasad, G. Catella, High energy AgGaSe2 optical parametric oscillator operating in 5.7–7 μm region, in: Nonlinear Optics: Materials, Fundamentals, and Applications, 2000, pp. 179–181, Technical Digest

[104] S. Chandra; T.H. Allik; G. Catella; J.A. Hutchinson Tunable output around 8 μm from a single step AgGaS2 OPO pumped at 1.064 μm (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 282-284

[105] P.G. Schunemann; S.D. Setzler; L. Mohnkern; T.M. Pollak; D.F. Bliss; D. Weyburne; K. O'Hearn 2.05-μm-laser-pumped orientation-patterned gallium arsenide (OPGaAs) OPO, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThQ4)

[106] P.G. Schunemann, Advances in NLO crystals for infrared parametric sources, Oral presentation given at Journées Scientifiques de l'ONERA (2007)

[107] P.A. Budni; M.G. Knights; E.P. Chicklis; K.L. Schepler Kilohertz AgGaSe2 optical parametric oscillator pumped at 2 μm, Opt. Lett., Volume 18 (1993), pp. 1068-1070

[108] K.L. Vodopyanov; F. Ganikhanov; J.P. Maffetone; I. Zwieback; W. Ruderman ZnGeP2 optical parametric oscillator with 3.8–12.4 μm tunability, Opt. Lett., Volume 25 (2000), pp. 841-843

[109] T.H. Allik; S. Chandra; D.M. Rines; P.G. Schunemann; J.A. Hutchinson; R. Utano Tunable 7–12 μm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP2 crystals, Opt. Lett., Volume 22 (1997), pp. 597-599

[110] Y. Isyanova; A. Dergachev; D. Welford; P.F. Moulton Multi-wavelength, 1.5–10 μm tunable, tandem OPO (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 548-553

[111] K.L. Vodopyanov; O. Levi; P.S. Kuo; T.J. Pinguet; J.S. Harris; M.M. Fejer; B. Gerard; L. Becouarn; E. Lallier Optical parametric oscillation in quasi-phase-matched GaAs, Opt. Lett., Volume 29 (2004), pp. 1912-1914

[112] S.E. Bisson; T.J. Kulp; O. Levi; J.S. Harris; M.M. Fejer Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs, Appl. Phys. B, Volume 85 (2006), pp. 199-206

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Continuous-wave mid-infrared laser sources based on difference frequency generation

Weidong Chen; Julien Cousin; Emmanuelle Poullet; ...

C. R. Phys (2007)


Millijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fibre Master-Oscillator Power-Amplifier at 1.55 μm

Christophe Codemard; Carl Farrell; Pascal Dupriez; ...

C. R. Phys (2006)


New laser crystals for the generation of ultrashort pulses

Frédéric Druon; François Balembois; Patrick Georges

C. R. Phys (2007)