Comptes Rendus
Physical design and performance estimation of heterogeneous optical transmission systems
[Conception et estimation de performance d'un système de transmission optique hétérogène]
Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 963-984.

Cet article aborde les problématiques de la conception et l'estimation de performance d'un système de transmission optique hétérogène, prenant en compte la multiplicité des phénomènes physiques interagissant, et tout particulièrement l'impact combiné des effets non-linéaires de type Kerr et de la dispersion chromatique. Nous passons en revue les grandes classes d'outils de design utilisés pour prédire la performance d'un système, ou pour optimiser la gestion de la dispersion chromatique. Enfin, nous introduisons les concepts de phase non-linéaire pondérée qui capturent l'impact de l'accumulation des effets non-linéaires sur le signal se propageant, et en déduisons des expressions analytiques prédisant la portée d'un système, ou permettant d'optimiser les puissances dans le contexte d'un réseau optique hétérogène composé de sections de fibres de caractéristiques très variables de l'une à l'autre.

This article introduces the issues of design and estimation of performance of a heterogeneous optical transmission system, taking into account the multiplicity of physical effects impairing propagation simultaneously, and, most particularly, the impact of Kerr-induced non-linear effects. We review the usual engineering tools enabling us to predict system performance, as well as design tools to optimize dispersion-management. Finally, we introduce the concept of weighted non-linear phase shifts, to capture the impact of the accumulated non-linearities on a propagating signal, and derive analytical expressions for system reach and power optimization in the context of highly heterogeneous optical link with mixed fiber features.

Publié le :
DOI : 10.1016/j.crhy.2008.11.002
Keywords: Optical fiber, Non-linear optics, Chromatic dispersion, System design, Dispersion-management, Telecommunication networks
Mot clés : Fibre optique, Optique non-linéaire, Dispersion chromatique, System design, Gestion de dispersion, Réseaux de télécommunications
Jean-Christophe Antona 1 ; Sébastien Bigo 1

1 Bell-Labs, Alcatel-Lucent France, route de Villejust, 91620 Nozay, France
@article{CRPHYS_2008__9_9-10_963_0,
     author = {Jean-Christophe Antona and S\'ebastien Bigo},
     title = {Physical design and performance estimation of heterogeneous optical transmission systems},
     journal = {Comptes Rendus. Physique},
     pages = {963--984},
     publisher = {Elsevier},
     volume = {9},
     number = {9-10},
     year = {2008},
     doi = {10.1016/j.crhy.2008.11.002},
     language = {en},
}
TY  - JOUR
AU  - Jean-Christophe Antona
AU  - Sébastien Bigo
TI  - Physical design and performance estimation of heterogeneous optical transmission systems
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 963
EP  - 984
VL  - 9
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.11.002
LA  - en
ID  - CRPHYS_2008__9_9-10_963_0
ER  - 
%0 Journal Article
%A Jean-Christophe Antona
%A Sébastien Bigo
%T Physical design and performance estimation of heterogeneous optical transmission systems
%J Comptes Rendus. Physique
%D 2008
%P 963-984
%V 9
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2008.11.002
%G en
%F CRPHYS_2008__9_9-10_963_0
Jean-Christophe Antona; Sébastien Bigo. Physical design and performance estimation of heterogeneous optical transmission systems. Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 963-984. doi : 10.1016/j.crhy.2008.11.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.11.002/

[1] G. Charlet, et al., Transmission of 16.4 Tb/s capacity over 2550 km using PDM-QPSK modulation format and coherent receiver, in: Proc. Optical Fiber Communications Conference (OFC'08), paper PDP3, February 24–28, 2008, San Diego, California, USA

[2] T. Haaris, R. Kline, OVUM market analysis: Market Share: 4Q07 and 2007 Global ON, 28 April 08

[3] Dell'Oro market analysis: Optical transport report, 4Q07, vol. 9, no. 4, O1A, Market Summary & Vendor Information, Technology Segments: WDM, SONET/SDH, Optical Switch

[4] G.P. Agrawal Non-Linear Fiber Optics, Academic Press, 2001

[5] O. Bertran-Pardo et al. Non-linearity mitigation when mixing 40 Gb/s PDM-QPSK channels with preexisting 10 Gb/s NRZ channels, IEEE Photon. Techno. Lett., Volume 20 ( 1 August 2008 ) no. 15, pp. 1314-1316

[6] J.-C. Antona et al., Non-linear cumulated phase as a criterion to assess performance of terrestrial WDM systems, in: Proc. Optical Fiber Communications Conference (OFC'02), paper WX5, March 18–22, 2002, Anaheim, California, USA

[7] J.-C. Antona et al., Performance evaluation of WDM transparent networks incorporating various fibre types, in: Proceedings of ECOC'06, We.3., Sept. 2006, Cannes (France), p. 141

[8] J.-C. Antona et al., Design and performance prediction in meshed networks with mixed fiber types, in: Proc. Optical Fiber Communications Conference (OFC'08), paper JThA48, February 24–28, 2008, San Diego, California, USA

[9] E. Desurvire et al. Erbium-Doped Fiber Amplifiers, Device and System Developments, Wiley & Sons, New York, 2002 (Chapter 7)

[10] G. Charlet Coherent detection associated with digital signal processing for fiber optics communications, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 1012-1030

[11] T. Mizuochi Recent progress in forward error correction and its interplay with transmission impairments, IEEE Journal of Selected Topics in Quantum Electronics, Volume 12 ( July/August 2006 ) no. 4, pp. 544-554

[12] I.P. Kaminow; T. Li Optical Fiber Telecommunications IV-B: Systems and Impairments, Academic Press, April 15, 2002

[13] S.D. Personick Receiver design for digital fiber optic communications systems, Bell System Technical Journal, Volume 52 (1973) no. 6, pp. 843-886

[14] A.R. Chraplivy et al. 8×10 Gb/s transmission through 280 km of dispersion-managed fiber, IEEE Photon. Technol. Lett., Volume 5 (1993) no. 10, pp. 1233-1235

[15] C. Kurtzke Suppression of fibre non-linearities by appropriate dispersion management, IEEE Photon. Technol. Lett., Volume 5 (1993) no. 10, pp. 1250-1253

[16] S. Bigo et al. Design of multi-terabit/s terrestrial transmission systems facilitated by simple analytical tools, Annales des Télécommunications, Volume 58 ( Novembre–Décembre 2003 ) no. 11–12, pp. 1757-1784

[17] C. Xie A doubly periodic dispersion map for ultralong-haul 10- and 40-Gb/s hybrid DWDM optical mesh networks, IEEE Photon. Technol. Lett., Volume 17 ( May 2005 ) no. 5

[18] A. Färbert et al. Optimised dispersion management scheme for long-haul optical communication systems, IEE Electron. Lett., Volume 35 (1999) no. 21, pp. 1865-1866

[19] A. Morea et al. New transmission systems enabling transparent network perspectives, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 985-1001

[20] M. Joindot; S. Gosselin Optical fiber transport systems and networks: fundamentals and prospects, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 914-934

[21] S. Pachnicke et al. Fast analytical assessment of the signal quality in transparent optical networks, IEEE Journal of Lightwave Technology, Volume 24 ( Feb. 2006 ) no. 2, pp. 815-882

[22] C.J. Anderson et al. Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference, IEE Electronics Letters, Volume 30 (1994) no. 1, pp. 71-72

[23] Y. Frignac, J.-C. Antona, S. Bigo, Enhanced analytical engineering rule for fast optimization of dispersion maps in 40 Gbit/s-based transmission systems, in: Proceedings Optical Fiber Communications (OFC'04), Los Angeles (Ca), paper TuN3, 2004

[24] R.I. Killey; H.J. Thiele; V. Mikhailov; P. Bayvel IEEE Photon. Technol. Lett., 12 (2000), pp. 1624-1626

[25] A. Bononi et al. Unified analysis of weakly-nonlinear dispersion-managed optical transmission systems using the perturbative approach, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 947-962

[26] H. Louchet; A. Hodzic; K. Petermann; A. Robinson IEEE Photon. Technol. Lett., 17 (2005), pp. 247-249

[27] H. Louchet; A. Hodzic; K. Petermann; A. Robinson; R. Epworth IEEE Photon. Technol. Lett., 17 (2005), pp. 2089-2091

[28] Y. Frignac, J.-C. Antona, S. Bigo, J.-P. Hamaide, Numerical optimization of pre- and inline-dispersion compensation in dispersion-managed systems at 40 Gb/s, Proceedings Optical Fiber Communications OFC'02, Paper ThFF5, Anaheim (Ca), 2002

[29] Y. Frignac, S. Bigo, Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference, in: Proceedings Optical Fiber Communication Conference, OFC 2000, vol. 1, 7–10 March 2000, pp. 48–50

[30] G. Bellotti et al. Dependence of self-phase modulation impairments on residual dispersion in 10 Gbit/s based terrestrial transmissions using standard fibre, IEEE Photon. Technol. Lett., Volume 11 (1999) no. 7, pp. 824-826

[31] S. Bigo et al., Investigation of self-phase modulation limitation on 10-Gbit/s transmission over different types of fiber, in: Proc. Optical Fiber Communications (OFC'98), San Jose, Feb. 1998, pp. 389–390

[32] V.E. Perlin, H.G. Winful, On trade-off between noise and non-linearity in WDM systems with distributed Raman amplification, in: Proc. Optical Fiber Communications (OFC'02), WB1, pp. 178–179, March 18–22, 2002, Anaheim, California, USA

[33] A. Carena et al. On the optimization of hybrid Raman/Erbium doped fiber amplifiers, IEEE PTL, Volume 13 ( Nov. 2001 ) no. 11

[34] P. Sillard et al., Optimized chromatic dispersion of DCMs in WDM transmission systems at 40 Gbps, in: Proc. Optical Fiber Communication Conference OFC'08, paper JWA13, San-Diego (Ca), 2008

[35] J.-C. Antona, P. Sillard, Relationship between the achievable distance of WDM transmission systems and criterion of quality for DCM, in: Proc. Optical Fiber Communication Conference OFC'06, paper OWJ2, Anaheim (Ca), March 2006

[36] S. Pachnike; N. Hecker-Denschlag; S. Spälter; J. Reichert; E. Voges Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks, IEEE Photon. Technol. Lett., Volume 16 ( May 2004 ) no. 5

[37] S. Pachnike et al., Experimental investigation of XPM-induced birefringence in mixed-fiber transparent optical networks, in: Proceedings of OFC'06, paper JThB9; March 2006, Anaheim (Ca)

[38] D. Breuer; N. Hanik; C. Caspar; F. Raub; G. Bramann; M. Rohde; E.-J. Bachus; S. McLeod; M. Edwards Mixed fiber infrastructures in long haul WDM-transmission, OSA Journal of Optical Communications, Volume 1 (2004), pp. 10-13

[39] D.Z. Chen et al., World's first 40 Gbps overlay on a field-deployed, 10 Gbps, mixed-fiber, 1200 km, ultra long-haul system, in: Proceedings of OFC'05, paper OTuH4, March 2005, Anaheim (Ca)

[40] M.H. Eiselt et al., Field trial of a 1250-km private optical network based on a single-fiber, shared-amplifier WDM system, in: Proceedings of OFC'06, paper NThF3, March 2006, Anaheim (Ca)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

New transmission systems enabling transparent network perspectives

A. Morea; F. Leplingard; T. Zami; ...

C. R. Phys (2008)


Optical fiber transport systems and networks: fundamentals and prospects

Michel Joindot; Stéphane Gosselin

C. R. Phys (2008)


Coherent detection associated with digital signal processing for fiber optics communication

Gabriel Charlet

C. R. Phys (2008)