Comptes Rendus
Quantum oscillations and the Fermi surface of high-temperature cuprate superconductors
[Oscillations quantiques et la surface de Fermi des supraconducteurs de cuprates à haute température]
Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 446-460.

Près de 20 ans après la découverte de la supraconductivité à haute température dans les cuprates (Bednorz et Müller, 1986 [1]), les bases théoriques nécessaires à la compréhension de ces systèmes ont été bouleversées par les premières observations indiscutables dʼoscillations quantiques dans YBa2Cu3O6.5 sous-dopé (Doiron-Leyraud et al., 2007 [2]). En effet, la surface de Fermi reflète la plupart des propriétés physiques des métaux (électriques, thermiques, optiques, etc.). Ce concept de base est très robuste, et demeure valide même en présence de fortes interactions électroniques. Néanmoins, sʼil nʼy avait aucun doute sur lʼexistence de cette surface de Fermi du côté sur-dopé, la découverte dʼoscillations quantiques du côté sous-dopé a été, elle, une vraie surprise. Les petites poches déduites des mesures dans YBa2Cu3Oy sous-dopé contrastent avec la grande orbite observée dans Tl2Ba2CuO6 + δ sur-dopé. Une question clef posée par le diagramme de phase des cuprates est donc cette différence de comportement de part et dʼautre du dôme supraconducteur. Nous apportons des éléments de réponse à cette question, à la lumière des résultats récents obtenus par les mesures dʼoscillations quantiques et de transport sous fort champ magnétique dans les cuprates dopés aux trous.

Over 20 years since the discovery of high temperature superconductivity in cuprates (Bednorz and Müller, 1986 [1]), the first convincing observation of quantum oscillations in underdoped YBa2Cu3O6.5 (Doiron-Leyraud et al., 2007 [2]) has deeply changed the theoretical landscape relevant to these materials. The Fermi surface is a basic concept of solid state physics, which underpins most physical properties (electrical, thermal, optical, etc.) of a metal. Even in the presence of interactions, this fundamental concept remains robust. While there was little doubt about the existence of a Fermi surface on the overdoped side of the phase diagram of the cuprates, the discovery of quantum oscillations in the underdoped regime was a surprise. The small pockets inferred from the measurements in underdoped YBa2Cu3Oy contrast with the large orbit found in overdoped Tl2Ba2CuO6 + δ. A central issue in understanding the phase diagram of high temperature superconductors is the origin of this difference at opposite sides of the superconducting dome. This review aims to shed light on this issue by bringing together recent results of quantum oscillation and transport measurements under high magnetic fields in hole-doped cuprates.

Publié le :
DOI : 10.1016/j.crhy.2011.04.011
Keywords: High temperature superconductors, Quantum oscillations, Fermi surface
Mot clés : Supraconductivité à haute température, Oscillations quantiques, Surface de Fermi
Baptiste Vignolle 1 ; David Vignolles 1 ; David LeBoeuf 1 ; Stéphane Lepault 1 ; Brad Ramshaw 2 ; Ruixing Liang 2, 3 ; D.A. Bonn 2, 3 ; W.N. Hardy 2, 3 ; Nicolas Doiron-Leyraud 4 ; A. Carrington 5 ; N.E. Hussey 5 ; Louis Taillefer 4, 3 ; Cyril Proust 1, 3

1 Laboratoire National des Champs Magnétiques Intenses (CNRS-INSA-UJF-UPS), 143, avenue de Rangueil, 31400 Toulouse, France
2 Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
3 Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
4 Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
5 H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
@article{CRPHYS_2011__12_5-6_446_0,
     author = {Baptiste Vignolle and David Vignolles and David LeBoeuf and St\'ephane Lepault and Brad Ramshaw and Ruixing Liang and D.A. Bonn and W.N. Hardy and Nicolas Doiron-Leyraud and A. Carrington and N.E. Hussey and Louis Taillefer and Cyril Proust},
     title = {Quantum oscillations and the {Fermi} surface of high-temperature cuprate superconductors},
     journal = {Comptes Rendus. Physique},
     pages = {446--460},
     publisher = {Elsevier},
     volume = {12},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crhy.2011.04.011},
     language = {en},
}
TY  - JOUR
AU  - Baptiste Vignolle
AU  - David Vignolles
AU  - David LeBoeuf
AU  - Stéphane Lepault
AU  - Brad Ramshaw
AU  - Ruixing Liang
AU  - D.A. Bonn
AU  - W.N. Hardy
AU  - Nicolas Doiron-Leyraud
AU  - A. Carrington
AU  - N.E. Hussey
AU  - Louis Taillefer
AU  - Cyril Proust
TI  - Quantum oscillations and the Fermi surface of high-temperature cuprate superconductors
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 446
EP  - 460
VL  - 12
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.04.011
LA  - en
ID  - CRPHYS_2011__12_5-6_446_0
ER  - 
%0 Journal Article
%A Baptiste Vignolle
%A David Vignolles
%A David LeBoeuf
%A Stéphane Lepault
%A Brad Ramshaw
%A Ruixing Liang
%A D.A. Bonn
%A W.N. Hardy
%A Nicolas Doiron-Leyraud
%A A. Carrington
%A N.E. Hussey
%A Louis Taillefer
%A Cyril Proust
%T Quantum oscillations and the Fermi surface of high-temperature cuprate superconductors
%J Comptes Rendus. Physique
%D 2011
%P 446-460
%V 12
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2011.04.011
%G en
%F CRPHYS_2011__12_5-6_446_0
Baptiste Vignolle; David Vignolles; David LeBoeuf; Stéphane Lepault; Brad Ramshaw; Ruixing Liang; D.A. Bonn; W.N. Hardy; Nicolas Doiron-Leyraud; A. Carrington; N.E. Hussey; Louis Taillefer; Cyril Proust. Quantum oscillations and the Fermi surface of high-temperature cuprate superconductors. Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 446-460. doi : 10.1016/j.crhy.2011.04.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.04.011/

[1] J.G. Bednorz; K.A. Müller Z. Phys. B Condens. Matter, 64 (1986), pp. 189-193

[2] N. Doiron-Leyraud; C. Proust; D. LeBoeuf; J. Levallois; J.-B. Bonnemaison; R. Liang; D.A. Bonn; W.N. Hardy; L. Taillefer Nature, 447 (2007), pp. 565-568

[3] C. Proust; E. Boaknin; R.W. Hill; L. Taillefer; A.P. Mackenzie Phys. Rev. Lett., 89 (2002), p. 147003

[4] S. Nakamae; K. Behnia; N. Mangkorntong; M. Nohara; H. Takagi; S.J.C. Yates; N.E. Hussey Phys. Rev. B, 68 (2003), p. 100502(R)

[5] A.P. Mackenzie; S.R. Julian; D.C. Sinclair; C.T. Lin Phys. Rev. B, 53 (1996), p. 5848

[6] T. Manako; Y. Kubo; Y. Shimakawa Phys. Rev. B, 46 (1992), p. 11019

[7] M. Abdel-Jawad; J.G. Analytis; L. Balicas; A. Carrington; J.P.H. Charmant; M.M.J. French; N.E. Hussey Phys. Rev. Lett., 99 (2007) no. 10, p. 107002

[8] R. Daou; N. Doiron-Leyraud; D. LeBoeuf; S.Y. Li; F. Laliberté; O. Cyr-Choinière; Y.J. Jo; L. Balicas; J.-Q. Yan; J.-S. Zhou; J.B. Goodenough; L. Taillefer Nature Phys., 5 (2009), p. 31

[9] R.A. Cooper; Y. Wang; B. Vignolle; O.J. Lipscombe; S.M. Hayden; Y. Tanabe; T. Adachi; Y. Koike; M. Nohara; H. Takagi; C. Proust; N.E. Hussey Science, 323 (2009), p. 603

[10] W.W. Warren; R.E. Walstedt; G.F. Brennert; R.J. Cava; R. Tycko; R.F. Bell; G. Dabbagh Phys. Rev. Lett., 62 (1989), p. 1193

[11] H. Alloul; T. Ohno; P. Mendels Phys. Rev. Lett., 63 (1989), p. 1700

[12] M.R. Norman; H. Ding; M. Randeria; J.C. Campuzano; T. Yokoya; T. Takeuchi; T. Takahashi; T. Mochiku; K. Kadowaki; P. Guptasarma; D.G. Hinks Nature, 392 (1998), p. 157

[13] B. Fauqué; Y. Sidis; V. Hinkov; S. Pailhès; C.T. Lin; X. Chaud; P. Bourges Phys. Rev. Lett., 96 (2006), p. 197001

[14] Y. Li; V. Balédent; N. Barisic; Y. Cho; B. Fauqué; Y. Sidis; G. Yu; X. Zhao; P. Bourges; M. Greven Nature, 455 (2008), p. 372

[15] J. Xia; E. Schemm; G. Deutscher; S.A. Kivelson; D.A. Bonn; W.N. Hardy; R. Liang; W. Siemons; G. Koster; M.M. Fejer; A. Kapitulnik Phys. Rev. Lett., 100 (2008), p. 127002

[16] R. Daou; J. Chang; D. LeBoeuf; O. Cyr-Choinière; F. Laliberté; N. Doiron-Leyraud; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; L. Taillefer Nature, 463 (2010), p. 519

[17] M.R. Norman; D. Pines; C. Kallin Adv. Phys., 54 (2005), p. 715

[18] P.W. Anderson Science, 235 (1987), p. 1196

[19] V.J. Emery; S.A. Kivelson Nature, 374 (1995), p. 434

[20] A.V. Chubukov; D.K. Morr Phys. Rep., 288 (1997), p. 355

[21] E.G. Moon; S. Sachdev Phys. Rev. B, 80 (2009), p. 035117

[22] S.A. Kivelson; I.P. Bindloss; E. Fradkin; V. Oganesyan; J.M. Tranquada; A. Kapitulnik; C. Howald Rev. Mod. Phys., 75 (2003), p. 1201

[23] M. Vojta Adv. Phys., 58 (2009), p. 699

[24] S. Chakravarty; R.B. Laughlin; D.K. Morr; C. Nayak Phys. Rev. B, 63 (2001), p. 094503

[25] C.M. Varma Phys. Rev. B, 55 (1997), p. 14554

[26] J.L. Tallon; J.W. Loram Physica C, 349 (2001), p. 53

[27] L. Taillefer J. Phys.: Condens. Matt., 21 (2009), p. 164212

[28] D. Shoenberg Magnetic Oscillations in Metals, Cambridge Univ. Press, Cambridge, 1984

[29] W.J. de Haas; P.M. van Alphen Proc. Sect. Sci. K. Ned. Akad. Wet., 33 (1930), p. 1106

[30] L. Shubnikov, W.Y. de Haas, Comm. Phys. Lab. Univ. Leiden 207a, 207c, 207d, 210a.

[31] I.M. Lifshitz; A.M. Kosevich Zh. Eksp. Teor. Fiz., 29 (1955), p. 730

[32] F.E. Richards Phys. Rev. B, 8 (1973), p. 2552

[33] B.J. Ramshaw; B. Vignolle; J. Day; R. Liang; W. Hardy; C. Proust; D.A. Bonn Nature Phys., 7 (2011), p. 234

[34] C. Bergemann; A.P. Mackenzie; S.R. Julian; D. Forsythe; E. Ohmichi Adv. Phys., 52 (2003), p. 639

[35] P. Frings; J. Billette; J. Béard; O. Portugall; F. Lecouturier; G.L.J.A. Rikken IEEE Trans. Appl. Supercond., 18 (2008), p. 592

[36] E. Ohmichi; T. Osada Rev. Sci. Instrum., 73 (2002), p. 3022

[37] N.E. Hussey; M. Abdel-Jawad; A. Carrington; A.P. Mackenzie; L. Balicas Nature, 425 (2003), p. 814

[38] M. Platé; J.D.F. Mottershead; I.S. Elfimov; D.C. Peets; R. Liang; D.A. Bonn; W.N. Hardy; S. Chiuzbaian; M. Falub; M. Shi; L. Patthey; A. Damascelli Phys. Rev. Lett., 95 (2005), p. 077001

[39] D.J. Singh; W.E. Pickett Physica C, 203 (1992), p. 193

[40] B. Vignolle; A. Carrington; R.A. Cooper; M.M.J. French; A.P. Mackenzie; C. Jaudet; D. Vignolles; C. Proust; N.E. Hussey Nature, 455 (2008), p. 952

[41] A.F. Bangura; P. Rourke; T. Benseman; M. Matusiak; J. Cooper; N. Hussey; A. Carrington Phys. Rev. B, 82 (2010), p. 140501(R)

[42] P.M.C. Rourke; A.F. Bangura; T.M. Benseman; M. Matusiak; J.R. Cooper; A. Carrington; N.E. Hussey New J. Phys., 12 (2010), p. 105009

[43] J.W. Loram; K.A. Mirza; J.M. Wade; J.R. Cooper; W.Y. Liang Physica C, 235–240 (1994), p. 134

[44] A.F. Bangura; J.D. Fletcher; A. Carrington; J. Levallois; M. Nardone; B. Vignolle; P.J. Heard; N. Doiron-Leyraud; D. LeBoeuf; L. Taillefer; S. Adachi; C. Proust; N.E. Hussey Phys. Rev. Lett., 100 (2008), p. 047004

[45] C. Jaudet; J. Levallois; A. Audouard; D. Vignolles; B. Vignolle; R. Liang; D. Bonn; W. Hardy; N. Hussey; L. Taillefer; C. Proust Physica B, 404 (2009), p. 354

[46] C. Jaudet; D. Vignolles; A. Audouard; J. Levallois; D. LeBoeuf; N. Doiron-Leyraud; B. Vignolle; M. Nardone; A. Zitouni; R. Liang; D.A. Bonn; W.N. Hardy; L. Taillefer; C. Proust Phys. Rev. Lett., 100 (2008), p. 187005

[47] E.A. Yelland; J. Singleton; C.H. Mielke; N. Harrison; F.F. Balakirev; B. Dabrowski; J.R. Cooper Phys. Rev. Lett., 100 (2008), p. 047003

[48] S.E. Sebastian; N. Harrison; E. Palm; T.P. Murphy; C.H. Mielke; R. Liang; D.A. Bonn; W.N. Hardy; G.G. Lonzarich Nature, 454 (2008), p. 200

[49] A. Audouard; C. Jaudet; D. Vignolles; R. Liang; D.A. Bonn; W.N. Hardy; L. Taillefer; C. Proust Phys. Rev. Lett., 103 (2009), p. 157003

[50] S. Chakravarty; D. Garcia-Aldea Phys. Rev. B, 82 (2010), p. 184526

[51] M.R. Norman; J. Lin Phys. Rev. B, 82 (2010), p. 060509(R)

[52] A. Carrington; E.A. Yelland Phys. Rev. B, 76 (2007), p. 140508

[53] J. Lin; A.J. Millis Phys. Rev. B, 72 (2005), p. 214506

[54] A. Millis; M.R. Norman Phys. Rev. B, 76 (2007), p. 220503

[55] K.-Y. Yang; T.M. Rice; F.-C. Zhang Phys. Rev. B, 73 (2006), p. 174501

[56] P.A. Lee Rep. Progr. Phys., 71 (2008), p. 012501

[57] T.D. Stanescu; G. Kotliar Phys. Rev. B, 74 (2006), p. 125110

[58] N. Harrison; R.D. McDonald; J. Singleton Phys. Rev. Lett., 99 (2007), p. 206406

[59] S. Chakravarty; C. Nayak; S. Tewari Phys. Rev. B, 68 (2003), p. 100504

[60] D. LeBoeuf; N. Doiron-Leyraud; J. Levallois; R. Daou; J.-B. Bonnemaison; N.E. Hussey; L. Balicas; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; S. Adachi; C. Proust; L. Taillefer Nature, 450 (2007), p. 533

[61] J. Chang; R. Daou; C. Proust; D. LeBoeuf; N. Doiron-Leyraud; F. Laliberté; B. Pingault; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; H. Takagi; A.B. Antunes; I. Sheikin; K. Behnia; L. Taillefer Phys. Rev. Lett., 104 (2010), p. 057005

[62] D. LeBoeuf; N. Doiron-Leyraud; B. Vignolle; M. Sutherland; B.J. Ramshaw; J. Levallois; R. Daou; F. Laliberté; O. Cyr-Choinière; J. Chang; Y.J. Jo; L. Balicas; R. Liang; D.A. Bonn; W.N. Hardy; C. Proust; L. Taillefer Phys. Rev. B, 83 (2011), p. 054506

[63] P.M.C. Rourke; A.F. Bangura; C. Proust; J. Levallois; N. Doiron-Leyraud; D. LeBoeuf; L. Taillefer; S. Adachi; M.L. Sutherland; N.E. Hussey Phys. Rev. B, 82 (2010), p. 020514(R)

[64] T. Ando J. Phys. Soc. Jpn., 37 (1974), p. 1233

[65] S. Chakravarty; A. Sudbo; P.W. Anderson; S. Strong Science, 261 (1993), p. 337

[66] B. Vignolle, B.J. Ramshaw, J. Day, D. LeBoeuf, W. Hardy, R. Liang, D. Bonn, L. Taillefer, C. Proust, unpublished.

[67] S.L. Cooper; K.E. Gray Physical Properties of High Temperature Superconductors IV (D.M. Ginsberg, ed.), World Scientific, Singapore, 1994, pp. 61-188

[68] D.G. Clarke; S.P. Strong Adv. Phys., 46 (1997), p. 545

[69] N.E. Hussey; A.P. Mackenzie; J.R. Cooper; Y. Maeno; S. Nishizaki; T. Fujita Phys. Rev. B, 57 (1998), p. 5505

[70] S.E. Sebastian; N. Harrison; P.A. Goddard; M.M. Altarawneh; C.H. Mielke; R. Liang; D.A. Bonn; W.N. Hardy; O. Andersen; G.G. Lonzarich Phys. Rev. B, 81 (2010), p. 214524

[71] F. Balakirev; Y. Ando; A. Passner; J. Betts; L. Schneemeyer; K. Segawa; G. Boebinger Physica C, 341–348 (2000), p. 1877

[72] J. Lin; A.J. Millis Phys. Rev. B, 78 (2008), p. 115108

[73] N.P. Armitage; F. Ronning; D.H. Lu; C. Kim; A. Damascelli; K.M. Shen; D.L. Feng; H. Eisaki; Z.-X. Shen; P.K. Mang; N. Kaneko; M. Greven; Y. Onose; Y. Taguchi; Y. Tokura Phys. Rev. Lett., 88 (2002), p. 257001

[74] Y. Dagan; M.M. Qazilbash; C.P. Hill; V.N. Kulkarni; R.L. Greene Phys. Rev. Lett., 92 (2004), p. 167001

[75] T. Helm; M.V. Kartsovnik; M. Bartkowiak; N. Bittner; M. Lambacher; A. Erb; J. Wosnitza; R. Gross Phys. Rev. Lett., 103 (2009), p. 157002

[76] E. Demler; S. Sachdev; Y. Zhang Phys. Rev. Lett., 87 (2001), p. 067202

[77] S. Sachdev Phys. Stat. Sol. B, 247 (2010), p. 537

[78] D. Haug; V. Hinkov; A. Suchaneck; D.S. Inosov; N.B. Christensen; C. Niedermayer; P. Bourges; Y. Sidis; J.T. Park; A. Ivanov; C.T. Lin; J. Mesot; B. Keimer Phys. Rev. Lett., 103 (2009), p. 017001

[79] B. Lake; H.M. Rønnow; N.B. Christensen; G. Aeppli; K. Lefmann; D.F. McMorrow; P. Vorderwisch; P. Smeibidl; N. Mangkorntong; T. Sasagawa; M. Nohara; H. Takagi; T.E. Mason Nature, 415 (2002), p. 299

[80] N. Harrison Phys. Rev. Lett., 102 (2009), p. 206405

[81] S. Chakravarty; H.-Y. Kee Proc. Natl. Acad. Sci., 105 (2008), p. 8835

[82] Y. Ando; K. Segawa; S. Komiya; A.N. Lavrov Phys. Rev. Lett., 88 (2002), p. 137005

[83] H. Yao; D. Lee; S. Kivelson | arXiv

[84] T. Wu, H. Mayaffre, S. Kramer, M. Horvatic, C. Berthier, W.N. Hardy, R. Liang, D.A. Bonn, M.-H. Julien, unpublished.

[85] F. Laliberté; J. Chang; N. Doiron-Leyraud; E. Hassinger; R. Daou; M. Rondeau; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; S. Pyon; T. Takayama; H. Takagi; I. Sheikin; L. Malone; C. Proust; K. Behnia; L. Taillefer | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

From quantum oscillations to charge order in high-Tc copper oxides in high magnetic fields

Baptiste Vignolle; David Vignolles; Marc-Henri Julien; ...

C. R. Phys (2013)


Interface enhanced superconductivity in FeSe/SrTiO 3 and the hidden nature

Sha Han; Can-Li Song; Xu-Cun Ma; ...

C. R. Phys (2021)


Electronic Raman scattering in copper oxide superconductors: Understanding the phase diagram

Alain Sacuto; Yann Gallais; Maximilien Cazayous; ...

C. R. Phys (2011)