Comptes Rendus
Everything you always wanted to know about the cosmological constant problem (but were afraid to ask)
[Tout ce que vous avez toujours voulu savoir sur le problème de la constante cosmologique sans jamais avoir osé le demander]
Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 566-665.

Cet article traite du problème de la constante cosmologique dʼune manière pédagogique aussi bien que technique. Nous passons en revue comment lʼénergie du vide peut être régularisée en espace temps plat et courbe, et comment son calcul peut être compris en termes de diagrammes de Feynman en bulles. En particulier, nous montrons que la valeur correctement renormalisée de lʼénergie de point zéro maintenant (pour une théorie libre) en en fait bien au dessous des 122 ordres de grandeur de lʼénergie critique de lʼunivers. Nous nous concentrons sur le cas des champs scalaires bien que nous considérions le cas des fermions et des bosons de jauge également afin de traiter lʼénergie du vide en supersymétrie. Nous discutons aussi comment la constante cosmologique peut être mesurée cosmologiquement et contrainte par la mesure de lʼorbite des planètes du système solaire ou encore des spectres atomiques. Nous passons aussi en revue pourquoi la mesure du Lamb shift et de lʼeffet Casimir semblent indiquer que les fluctuations quantiques de lʼénergie du vide ne sont pas un artefact du formalisme de la théorie des champs. Nous montrons ensuite comment les expériences sur lʼuniversalité de la chute libre peuvent aider à contraindre les propriétés gravitationnelles de lʼénergie du vide et nous discutons le statut du principe dʼéquivalence faible en mécanique quantique, en particulier lʼexpérience de Colella, Overhauser et Werner ainsi que lʼexpérience de Galilée quantique faite avec une horloge de Salecker–Wigner–Peres. Enfin, nous concluons brièvement avec une discussion sur les différentes solutions au problème de la constante cosmologique qui ont été proposées jusquʼà présent.

This article aims at discussing the cosmological constant problem at a pedagogical but fully technical level. We review how the vacuum energy can be regularized in flat and curved space–time and how it can be understood in terms of Feynman bubble diagrams. In particular, we show that the properly renormalized value of the zero-point energy density today (for a free theory) is in fact far from being 122 orders of magnitude larger than the critical energy density, as often quoted in the literature. We mainly consider the case of scalar fields but also treat the cases of fermions and gauge bosons which allows us to discuss the question of vacuum energy in super-symmetry. Then, we discuss how the cosmological constant can be measured in cosmology and constrained with experiments such as measurements of planet orbits in our solar system or atomic spectra. We also review why the Lamb shift and the Casimir effect seem to indicate that the quantum zero-point fluctuations are not an artifact of the quantum field theory formalism. We investigate how experiments on the universality of free fall can constrain the gravitational properties of vacuum energy and we discuss the status of the weak equivalence principle in quantum mechanics, in particular the Colella, Overhauser and Werner experiment and the quantum Galileo experiment performed with a Salecker–Wigner–Peres clock. Finally, we briefly conclude with a discussion on the solutions to the cosmological constant problem that have been proposed so far.

Publié le :
DOI : 10.1016/j.crhy.2012.04.008
Keywords: Cosmological constant problem, Feynman bubble diagrams, Super-symmetry, Vacuum energy
Mot clés : Problème de la constante cosmologique, Diagrammes de Feynman en bulles, Supersymétrie, Énergie du vide
Jérôme Martin 1

1 Institut dʼastrophysique de Paris, UMR7095-CNRS, université Pierre-et-Marie-Curie, 98 bis, boulevard Arago, 75014 Paris, France
@article{CRPHYS_2012__13_6-7_566_0,
     author = {J\'er\^ome Martin},
     title = {Everything you always wanted to know about the cosmological constant problem (but were afraid to ask)},
     journal = {Comptes Rendus. Physique},
     pages = {566--665},
     publisher = {Elsevier},
     volume = {13},
     number = {6-7},
     year = {2012},
     doi = {10.1016/j.crhy.2012.04.008},
     language = {en},
}
TY  - JOUR
AU  - Jérôme Martin
TI  - Everything you always wanted to know about the cosmological constant problem (but were afraid to ask)
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 566
EP  - 665
VL  - 13
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.04.008
LA  - en
ID  - CRPHYS_2012__13_6-7_566_0
ER  - 
%0 Journal Article
%A Jérôme Martin
%T Everything you always wanted to know about the cosmological constant problem (but were afraid to ask)
%J Comptes Rendus. Physique
%D 2012
%P 566-665
%V 13
%N 6-7
%I Elsevier
%R 10.1016/j.crhy.2012.04.008
%G en
%F CRPHYS_2012__13_6-7_566_0
Jérôme Martin. Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 566-665. doi : 10.1016/j.crhy.2012.04.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.008/

[1] S. Weinberg Rev. Mod. Phys., 61 (1989), p. 1

[2] S.M. Carroll; W.H. Press; E.L. Turner Ann. Rev. Astron. Astrophys., 30 (1992), p. 499

[3] A.D. Dolgov, 1997 | arXiv

[4] V. Sahni; A.A. Starobinsky Int. J. Mod. Phys. D, 9 (2000), p. 373 | arXiv

[5] N. Straumann Eur. J. Phys., 20 (1999), p. 419 | arXiv

[6] S. Weinberg, 2000 | arXiv

[7] S.M. Carroll Living Rev. Rel., 4 (2001), p. 1 | arXiv

[8] S.E. Rugh; H. Zinkernagel Stud. Hist. Philos. Mod. Phys. (2000) | arXiv

[9] T. Padmanabhan Phys. Rept., 380 (2003), p. 235 | arXiv

[10] J. Yokoyama, 2003 | arXiv

[11] S. Sarkar Special section of current science on the legacy of Albert Einstein, Curr. Sci., Volume 88 (2005), p. 2120

[12] J. Polchinski, 2006 (pp. 216–236) | arXiv

[13] E.J. Copeland; M. Sami; S. Tsujikawa Int. J. Mod. Phys. D, 15 (2006), p. 1753 | arXiv

[14] P. Brax, 2009 | arXiv

[15] D. Sapone Int. J. Mod. Phys. A, 25 (2010), p. 5253 | arXiv

[16] M.E. Peskin; D.V. Schroeder An Introduction to Quantum Field Theory, Addison-Wesley Publishing Company, 1995

[17] W. Greiner; J. Reinhardt Field Quantization, Springer, Berlin, Germany, 1996

[18] C. Itzykson; J.B. Zuber Quantum Field Theory, International Series in Pure and Applied Physics, McGraw-Hill, 1980

[19] D. Bailin; A. Love Supersymmetric Gauge Field Theory and String Theory, Graduate Student Series in Physics, IOP, 1994

[20] M. Le Bellac Quantum and Statistical Field Theory, Oxford, 1991

[21] L.H. Ryder Quantum Field Theory, Cambridge Univ. Press, 1985

[22] F. Mandl; G. Shaw Quantum Field Theory, Wiley-Interscience Publication, 1984

[23] S. Perlmutter; et al.; Supernova Cosmology Project Astrophys. J., 517 (1999), p. 565 | arXiv

[24] A.G. Riess; et al.; Supernova Search Team Astron. J., 116 (1998), p. 1009 | arXiv

[25] A.A. Starobinsky Phys. Lett. B, 91 (1980), p. 99

[26] A.H. Guth Phys. Rev. D, 23 (1981), p. 347

[27] V.F. Mukhanov; G. Chibisov JETP Lett., 33 (1981), p. 532

[28] A.D. Linde Phys. Lett. B, 108 (1982), p. 389

[29] V.F. Mukhanov; G. Chibisov Sov. Phys. JETP, 56 (1982), p. 258

[30] A.A. Starobinsky Phys. Lett. B, 117 (1982), p. 175

[31] A.H. Guth; S.Y. Pi Phys. Rev. Lett., 49 (1982), p. 1110

[32] S. Hawking Phys. Lett. B, 115 (1982), p. 295 (revised version)

[33] A. Albrecht; P.J. Steinhardt Phys. Rev. Lett., 48 (1982), p. 1220

[34] A.D. Linde Phys. Lett. B, 129 (1983), p. 177

[35] J. Martin Braz. J. Phys., 34 (2004), p. 1307 | arXiv

[36] J. Martin Lect. Notes Phys., 669 (2005), p. 199 | arXiv

[37] J. Martin Lect. Notes Phys., 738 (2008), p. 193 | arXiv

[38] G.F. Smoot; C. Bennett; A. Kogut; E. Wright; J. Aymon et al. Astrophys. J., 396 (1992), p. L1

[39] J. Martin; C. Ringeval JCAP, 0608 (2006), p. 009 | arXiv

[40] P. Astier; R. Pain Observational evidence of the accelerated expansion of the Universe, C. R. Physique, Volume 13 (2012), pp. 521-538 ( in this issue ) | DOI

[41] M. Kunz The phenomenological approach to modeling the dark energy, C. R. Physique, Volume 13 (2012), pp. 539-565 ( in this issue ) | DOI

[42] C. Clarkson Establishing homogeneity of the universe in the shadow of dark energy, C. R. Physique, Volume 13 (2012), pp. 682-718 ( in this issue ) | DOI

[43] C. de Rham Galileons in the sky, C. R. Physique, Volume 13 (2012), pp. 666-681 ( in this issue ) | DOI

[44] A. Sakharov Sov. Phys. Dokl., 12 (1968), p. 1040

[45] J. Kapusta; C. Gale Finite-Temperature Field Theory: Principles and Applications, Cambridge Univ. Press, 2006

[46] S. Chatrchyan; et al.; CMS Collaboration, 2012 | arXiv

[47] E.K. Akhmedov, 2002 | arXiv

[48] M. Abramowitz; I.A. Stegun Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, US, 1970

[49] I.S. Gradshteyn; I.M. Ryzhik Table of Integrals, Series, and Products, Academic Press, New York and London, 1965

[50] G. Ossola; A. Sirlin Eur. Phys. J. C, 31 (2003), p. 165 (28 pages, 5 figures) | arXiv

[51] J.F. Koksma; T. Prokopec, 2011 | arXiv

[52] L. Rosenberg Phys. Rev., 129 (1963), p. 2786

[53] N.D. Birrell; P.C.W. Davies Quantum Fields in Curved Space, Cambridge Univ. Press, 1982

[54] C.M. Bender; T.T. Wu Phys. Rev., 184 (1969), p. 1231

[55] T. Abbott Lecture Notes (2006) web.mit.edu/tabbott/Public/8.06/current.pdf

[56] J. Minahan MIT Lecture Notes (2011) http://www.teorfys.uu.se/people/minahan/Courses/QFT/wholeshebang.pdf

[57] C. Cohen-Tannoudji; B. Diu; F. Laloe Quantum Mechanics, Wiley-Interscience, 2006

[58] P.M. Stevenson Phys. Rev. D, 30 (1984), p. 1712

[59] P.M. Stevenson Phys. Rev. D, 32 (1985), p. 1389

[60] P.M. Stevenson; I. Roditi Phys. Rev. D, 33 (1986), p. 2305

[61] P.M. Stevenson Z. Phys. C, 35 (1987), p. 467

[62] P.M. Stevenson; B. Alles; R. Tarrach Phys. Rev. D, 35 (1987), p. 2407

[63] P.M. Stevenson; R. Tarrach Phys. Lett. B, 176 (1986), p. 436

[64] G. Hajj; P.M. Stevenson Phys. Rev. D, 37 (1988), p. 413

[65] P.M. Stevenson; G. Hajj; J. Reed Phys. Rev. D, 34 (1986), p. 3117

[66] R. Ibanez-Meier; I. Stancu; P.M. Stevenson Z. Phys. C, 70 (1996), p. 307 | arXiv

[67] S.R. Coleman; E.J. Weinberg Phys. Rev. D, 7 (1973), p. 1888

[68] E.J. Weinberg; A.-q. Wu Phys. Rev. D, 36 (1987), p. 2474

[69] T. Curtright; C.B. Thorn J. Math. Phys., 25 (1984), p. 541

[70] J. Wess; B. Zumino Nucl. Phys. B, 70 (1974), p. 39

[71] S.R. Coleman; J. Wess; B. Zumino Phys. Rev., 177 (1969), p. 2239

[72] J. Callan; G. Curtis; S.R. Coleman; J. Wess; B. Zumino Phys. Rev., 177 (1969), p. 2247

[73] J. Wess; B. Zumino Phys. Lett. B, 49 (1974), p. 52

[74] I.J. Aitchison, Notes of Lectures for Graduate Students in Particle Physics, Oxford, 2004 and 2005 | arXiv

[75] P. Binetruy Supersymmetry: Theory, Experiment and Cosmology, Oxford Univ. Press, 2006

[76] L. Parker, in: Cargese 1978, Proceedings, Recent Developments in Gravitation, 1978, pp. 219–273.

[77] T.S. Bunch; L. Parker Phys. Rev. D, 20 (1979), p. 2499

[78] E. Poisson; A. Pound; I. Vega Living Rev. Rel., 14 (2011) no. 7 | arXiv

[79] R. Scranton; et al.; SDSS, 2003 | arXiv

[80] P. Solevi; R. Mainini; S.A. Bonometto, 2004 | arXiv

[81] D.N. Spergel; et al.; WMAP Astrophys. J. Suppl., 170 (2007), p. 377 | arXiv

[82] M. Tegmark; et al.; SDSS Phys. Rev. D, 69 (2004), p. 103501 | arXiv

[83] E. Kolb; M. Turner The Early Universe, Frontiers in Physics Series, vol. 69, Addison-Wesley Publishing Company, 1990

[84] B. Ratra; P.J.E. Peebles Phys. Rev. D, 37 (1988), p. 3406

[85] P. Brax; J. Martin Phys. Lett. B, 468 (1999), p. 40 | arXiv

[86] P. Brax; J. Martin Phys. Rev. D, 61 (2000), p. 103502 | arXiv

[87] P. Brax; J. Martin; A. Riazuelo Phys. Rev. D, 62 (2000), p. 103505 | arXiv

[88] P. Brax; J. Martin; A. Riazuelo Phys. Rev. D, 64 (2001), p. 083505 | arXiv

[89] J. Martin; M.A. Musso Phys. Rev. D, 71 (2005), p. 063514 | arXiv

[90] J. Martin; C. Schimd; J.-P. Uzan Phys. Rev. Lett., 96 (2006), p. 061303 | arXiv

[91] P. Brax; J. Martin Phys. Lett. B, 647 (2007), p. 320 | arXiv

[92] P. Brax; J. Martin JCAP, 0611 (2006), p. 008 | arXiv

[93] P. Brax; J. Martin Phys. Rev. D, 75 (2007), p. 083507 | arXiv

[94] P. Brax; C. van de Bruck; J. Martin; A.-C. Davis JCAP, 0909 (2009), p. 032 | arXiv

[95] C.F. Kolda; D.H. Lyth Phys. Lett. B, 458 (1999), p. 197 | arXiv

[96] S.M. Carroll Phys. Rev. Lett., 81 (1998), p. 3067 | arXiv

[97] M. Doran; J. Jaeckel, 2002 | arXiv

[98] M. Doran; J. Jaeckel Lect. Notes Phys., 646 (2004), p. 273

[99] M. Garny Phys. Rev. D, 74 (2006), p. 043009 | arXiv

[100] C. Ringeval; T. Suyama; T. Takahashi; M. Yamaguchi; S. Yokoyama Phys. Rev. Lett., 105 (2010), p. 121301 | arXiv

[101] I. Maor; R. Brustein; P.J. Steinhardt Phys. Rev. Lett., 86 (2001), p. 6 | arXiv

[102] S. Weinberg Gravitation and Cosmology, John Wiley & Sons, 1972

[103] E.L. Wright, 1998 | arXiv

[104] A.W. Kerr; J.C. Hauck; B. Mashhoon Class. Quant. Grav., 20 (2003), p. 2727 | arXiv

[105] P. Jetzer, 2007 | arXiv

[106] L. Parker Phys. Rev. D, 22 (1980), p. 1922

[107] L. Parker; L.O. Pimentel Phys. Rev. D, 25 (1982), p. 3180

[108] L. Parker Phys. Rev. D, 24 (1981), p. 535

[109] S. Moradi; E. Aboualizadeh Gen. Rel. Grav., 42 (2010), p. 435

[110] E. Fischbach; B.S. Freeman; W.-K. Cheng Phys. Rev. D, 23 (1981), p. 2157

[111] N. Boulanger; P. Spindel; F. Buisseret Phys. Rev. D, 74 (2006), p. 125014 | arXiv

[112] T.A. Welton Phys. Rev., 74 (1948), p. 1157

[113] G. Plunien; B. Muller; W. Greiner Phys. Rept., 134 (1986), p. 87

[114] K.A. Milton J. Phys. A, 37 (2004), p. R209 | arXiv

[115] K.A. Milton, 2000 (pp. 333–349) | arXiv

[116] K.A. Milton Lect. Notes Phys., 834 (2011), p. 39 | arXiv

[117] A. Lambrecht; S. Reynaud, 2011 | arXiv

[118] K.A. Milton Phys. Rev. D, 68 (2003), p. 065020 | arXiv

[119] D. Deutsch; P. Candelas Phys. Rev. D, 20 (1979), p. 3063

[120] P. Milonni; M.-L. Shih Phys. Rev. A, 45 (1992), p. 4241

[121] R. Jaffe Phys. Rev. D, 72 (2005), p. 021301 | arXiv

[122] M. Chernodub, 2012 | arXiv

[123] E. Calloni; L. Di Fiore; G. Esposito; L. Milano; L. Rosa Phys. Lett. A, 297 (2002), p. 328 | arXiv

[124] G. Bimonte; E. Calloni; G. Esposito; L. Rosa Phys. Rev. D, 76 (2007), p. 025008 | arXiv

[125] S.A. Fulling; K.A. Milton; P. Parashar; A. Romeo; K. Shajesh et al. Phys. Rev. D, 76 (2007), p. 025004 | arXiv

[126] K.A. Milton; S.A. Fulling; P. Parashar; A. Romeo; K. Shajesh et al. J. Phys. A, 41 (2008), p. 164052 | arXiv

[127] K. Milton; P. Parashar; J. Wagner; K. Shajesh; A. Romeo et al., 2008 | arXiv

[128] R. Caldwell, 2002 | arXiv

[129] F. Sorge Class. Quant. Grav., 22 (2005), p. 5109

[130] E. Masso Phys. Lett. B, 679 (2009), p. 433 | arXiv

[131] Y. Su; B.R. Heckel; E. Adelberger; J. Gundlach; M. Harris et al. Phys. Rev. D, 50 (1994), p. 3614

[132] T. Damour Space Sci. Rev. (2009) | arXiv

[133] R. Colella; A. Overhauser; S. Werner Phys. Rev. Lett., 34 (1975), p. 1472

[134] D.M. Greenberger; A. Overhauser Rev. Mod. Phys., 51 (1979), p. 43

[135] D.M. Greenberger Rev. Mod. Phys., 55 (1983), p. 875

[136] H. Salecker; E. Wigner Phys. Rev., 109 (1958), p. 571

[137] A. Peres Am. J. Phys., 48 (1980), p. 552

[138] C. Leavens Solid Sate Commun., 86 (1993), p. 781

[139] P. Davies Class. Quant. Grav., 21 (2004), p. 5677

[140] P.C.W. Davies Class. Quant. Grav., 21 (2004), p. 2761 | arXiv

[141] N. Grot; C. Rovelli; R.S. Tate Phys. Rev. A, 54 (1996), p. 4679 | arXiv

[142] Y. Aharonov; J. Oppenheim; S. Popescu; B. Reznik; W. Unruh Phys. Rev. A, 57 (1998), p. 4130 | arXiv

[143] J. Oppenheim; B. Reznik; W. Unruh Phys. Rev. A, 59 (1999), p. 1804 | arXiv

[144] P.C. Davies Am. J. Phys., 73 (2005), p. 23

[145] B. Mielnik; G. Torres-Vega, 2011 (e-prints) | arXiv

[146] L. Viola; R. Onofrio Phys. Rev. D, 55 (1997), p. 455 | arXiv

[147] M. Ali; A. Majumdar; D. Home; A.K. Pan Class. Quant. Grav., 23 (2006), p. 6493 | arXiv

[148] P. Chowdhury; D. Home; A. Majumdar; S. Mousavi; M. Mozaffari et al. Class. Quant. Grav., 29 (2012), p. 025010

[149] R. Onofrio Int. J. Mod. Phys. A, 25 (2010), p. 2260 | arXiv

[150] D. Giulini, 2011 | arXiv

[151] E. Kajari; N.L. Harshman; E.M. Rasel; S. Stenholm; G. Süßmann; W.P. Schleich Appl. Phys. B, 100 (2010), p. 43 | arXiv

[152] V. Nesvizhevsky; H. Borner; A. Gagarski; A. Petoukhov; G. Petrov et al. Phys. Rev. D, 67 (2003), p. 102002 | arXiv

[153] H. Abele; S. Baessler; H. Borner; A. Gagarsky; V. Nesvizhevsky et al. AIP Conf. Proc., 842 (2006), p. 793

[154] S. Nobbenhuis, Ph.D. thesis, 2006, gr-qc/0609011 (Advisor: G. ʼt Hooft).

[155] A. Dolgov The Very Early Universe (G. Gibbons; S.W. Hawking; S.T. Tiklos, eds.), Cambridge University Press, Cambridge, England, 1982

[156] L. Ford Phys. Rev. D, 35 (1987), p. 2339

[157] A.D. Dolgov; F. Urban Phys. Rev. D, 77 (2008), p. 083503 | arXiv

[158] L.W. Abramo; R.H. Brandenberger; V.F. Mukhanov Phys. Rev. D, 56 (1997), p. 3248 | arXiv

[159] V.F. Mukhanov; L.W. Abramo; R.H. Brandenberger Phys. Rev. Lett., 78 (1997), p. 1624 | arXiv

[160] J. Hartle; S. Hawking Phys. Rev. D, 28 (1983), p. 2960

[161] E. Baum Phys. Lett. B, 133 (1983), p. 185

[162] S.R. Coleman Nucl. Phys. B, 310 (1988), p. 643

[163] V. Rubakov; M. Shaposhnikov Phys. Lett. B, 125 (1983), p. 139

[164] C. Burgess Annals Phys., 313 (2004), p. 283 (paper has been updated to include developments since the conference) | arXiv

[165] B. Zwiebach A First Course in String Theory, Cambridge Univ. Press, 2004

[166] S. Weinberg Phys. Rev. Lett., 59 (1987), p. 2607

[167] A. Linde; M. Noorbala JCAP, 1009 (2010), p. 008 | arXiv

[168] G.D. Starkman; R. Trotta Phys. Rev. Lett., 97 (2006), p. 201301 | arXiv

[169] R. Trotta; G.D. Starkman AIP Conf. Proc., 878 (2006), p. 323 | arXiv

[170] N. Afshordi, 2008 | arXiv

[171] G.F. Ellis; H. van Elst; J. Murugan; J.-P. Uzan Class. Quant. Grav., 28 (2011), p. 225007 | arXiv

[172] S. Aslanbeigi; G. Robbers; B.Z. Foster; K. Kohri; N. Afshordi Phys. Rev. D, 84 (2011), p. 103522 | arXiv

[173] G. Volovik Phys. Rept., 351 (2001), p. 195 | arXiv

[174] G. Volovik Annalen Phys., 14 (2005), p. 165 | arXiv

[175] L. Sindoni, 2011 (invited review for SIGMA Special Issue ‘Loop Quantum Gravity and Cosmology’, 54 pages) | arXiv

[176] G. Volovik, 2001 | arXiv

[177] G. Volovik Int. Ser. Monogr. Phys., 117 (2006), p. 1

[178] S.H. Alexander; G. Calcagni Found. Phys., 38 (2008), p. 1148 | arXiv

[179] S. Finazzi; S. Liberati; L. Sindoni Phys. Rev. Lett., 108 (2012), p. 071101 (5 pages, 1 figures) | arXiv

[180] S. Finazzi; S. Liberati; L. Sindoni, 2012 | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Neutrinos in the early universe

Wilfried Buchmüller

C. R. Phys (2005)


Searching for extra dimensions at colliders

Marc Besançon

C. R. Phys (2003)


Higgs boson properties in the Standard Model and its supersymmetric extensions

John Ellis; Giovanni Ridolfi; Fabio Zwirner

C. R. Phys (2007)