Comptes Rendus
New developments of advanced high-strength steels for automotive applications
[Nouveaux développements dans le domaine des aciers à très haute résistance pour les applications automobiles]
Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 641-656.

L'industrie automobile demande des aciers plus résistants pour alléger les pièces et améliorer la résistance aux chocs. Le maintien d'une bonne ductilité tout en augmentant la résistance à la traction nécessite le développement de nouvelles nuances dans lesquelles les mécanismes de durcissement compensent la baisse de l'allongement en augmentant la résistance mécanique. Ceci est principalement réalisé avec des aciers multiphasés et en complétant le durcissement par dislocation par du maclage et une transformation martensitique pendant la déformation. Ceci a donné naissance à des familles d'aciers à haute résistance dont certaines sont déjà utilisées pour la caisse en blanc (aciers Dual Phase (DP) et TRIP). D'autres, encore en cours de développement, apparaîtront bientôt sur le marché (aciers trempés et partitionnés (Q&P), aciers à moyenne teneur en manganèse ou TWIP).

Automotive industry asks for higher resistant steels to lighten parts and improve crash resistance. Keeping a good ductility while increasing tensile strength requires the development of new grades in which hardening mechanisms counteract the drop in elongation when enhancing mechanical resistance. This is mainly achieved with multiphase steels and completing dislocation hardening by twinning and martensite transformation during straining. This has led to high-strength steel families, some of them being already used in body in white (Dual Phase (DP) and TRIP steels). Others, still in development, will soon emerge on the market (Quenched and Partitioned (Q&P), medium-Mn steels or TWIP).

Publié le :
DOI : 10.1016/j.crhy.2018.11.004
Keywords: Advanced high-strength steels, TRIP steels, TWIP steels, Q&P steels, Medium-Mn steels, Automotive applications
Mot clés : Aciers à très haute résistance, Aciers TRIP, Aciers TWIP, Procédé Q&P, Aciers moyen Mn, Application automobile
Jean-Hubert Schmitt 1 ; Thierry Iung 2

1 MSSMat, CNRS, Centrale Supélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
2 ArcelorMittal Global R&D – Maizières, Voie Romaine, 57283 Maizières-lès-Metz, France
@article{CRPHYS_2018__19_8_641_0,
     author = {Jean-Hubert Schmitt and Thierry Iung},
     title = {New developments of advanced high-strength steels for automotive applications},
     journal = {Comptes Rendus. Physique},
     pages = {641--656},
     publisher = {Elsevier},
     volume = {19},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crhy.2018.11.004},
     language = {en},
}
TY  - JOUR
AU  - Jean-Hubert Schmitt
AU  - Thierry Iung
TI  - New developments of advanced high-strength steels for automotive applications
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 641
EP  - 656
VL  - 19
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.11.004
LA  - en
ID  - CRPHYS_2018__19_8_641_0
ER  - 
%0 Journal Article
%A Jean-Hubert Schmitt
%A Thierry Iung
%T New developments of advanced high-strength steels for automotive applications
%J Comptes Rendus. Physique
%D 2018
%P 641-656
%V 19
%N 8
%I Elsevier
%R 10.1016/j.crhy.2018.11.004
%G en
%F CRPHYS_2018__19_8_641_0
Jean-Hubert Schmitt; Thierry Iung. New developments of advanced high-strength steels for automotive applications. Comptes Rendus. Physique, Volume 19 (2018) no. 8, pp. 641-656. doi : 10.1016/j.crhy.2018.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.11.004/

[1] E.W. Hart Theory of the tensile test, Acta Metall., Volume 15 (1967), pp. 351-355

[2] G. Cole; A. Glove; R. Jeryan; G. Davies Steel World, 2 (1997), pp. 75-83

[3] J. Galán; L. Samek; P. Verleysen; K. Verbeken; Y. Houbaert Advanced high strength steels for automotive industry, Rev. Metal., Volume 48 (2012), pp. 118-131

[4] G. Krauss Martensite in steel: strength and structure, Mater. Sci. Eng. A, Volume 273 (1999), pp. 40-57

[5] G. Thewlis Classification and quantification of microstructures in steels, Mater. Sci. Technol., Volume 20 (2004), pp. 143-160

[6] J.Y. Koo; M.J. Young; G. Thomas On the law of mixtures and dual phase steels, Metall. Trans. A, Volume 11 (1980), pp. 852-854

[7] S. Allain; O. Bouaziz; M. Takahashi Toward a new interpretation of the mechanical behaviour of as quenched low alloyed martensitic steels, ISIJ Int., Volume 52 (2012), pp. 717-722

[8] S. Van Bohemen Bainite and martensite start temperature calculated with exponential carbon dependence, Mater. Sci. Technol., Volume 28 (2012), pp. 487-495

[9] F.B. Pickering Physical Metallurgy and Design of Steels, Applied Science Publishers, London, UK, 1978

[10] G.B. Olson; M. Cohen A mechanism for the strain-induced nucleation of martensitic transformations, J. Less-Common Met., Volume 28 (1972), pp. 107-118

[11] G.B. Olson; M. Cohen Kinetics of strain-induced martensitic nucleation, Metall. Trans. A, Volume 6A (1975), pp. 791-795

[12] V.F. Zackay; E.R. Parker; D. Fahr; R. Busch Enhancement of ductility in high-strength steels, A.S.M. Trans. Q., Volume 60 (1967), pp. 252-259

[13] J.C. Bittence Dual-phase steels promise higher strength plus formability, Mater. Eng., Volume 87 (1978), pp. 39-42

[14] C.A.N. Lanzillotto; F.B. Pickering Structure property relationships in dual-phase steels, Met. Sci., Volume 16 (1982), pp. 371-382

[15] Fundamentals of Dula-Phase Steels (R.A. Kot; B.L. Bramfitt, eds.), TMS-AIME, New-York, 1979

[16] B. Ghosh; O.N. Mohanty Partitioning of micro-additions in dual-phase steels and structure property correlation, Trans. Indian Inst. Met., Volume 49 (1996), pp. 143-150

[17] S.Y.P. Allain; O. Bouaziz; I. Pushkavera; C.P. Scott Towards the microstructure design of DP steels: a generic size-sensitive mean-field mechanical model, Mater. Sci. Eng. A, Volume 637 (2015), pp. 222-234

[18] T. Waterschoot; B.C. De Cooman; A.K. De; S. Vandeputte Static strain aging phenomena in cold-rolled dual-phase steels, Metall. Mater. Trans. A, Volume 34A (2003), pp. 781-791

[19] F.P. Pleschiutschnigg; V.V. Jamnis; S.R. Talwar; A.K. Misra; R.P.V. Atluri; R.B. Singh; P. Shankar; R.K. Verma; R.K. Goyal; V.P. Mishra; B. Deepu; P. Meierling; J. Pleschiutschnigg Start of dual-phase hot strip production in the MPS. Dolvi plant of Ispat Industries Ltd. in India, Steel Grips, Volume 2 (2004), pp. 171-176

[20] A. Kyrolainen; M. Vilpas; H. Hanninen Use of stainless steels in bus coach structures, J. Mater. Eng. Perform., Volume 9 (2000), pp. 669-677

[21] S.S.M. Tavares; J.M. Pardal; M.J. Gomes da Silva; H.F.G. Abreu; M.R. da Silva Deformation induced martensitic transformation in a 201 modified austenitic stainless steel, Mater. Charact., Volume 60 (2009), pp. 907-911

[22] Y. Sakuma; D.K. Matlock; G. Krauss Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si–1.5 Pct Mn and 4 Pct Ni: part I. Transformation, microstructure, and room-temperature mechanical properties, Metall. Trans. A, Volume 23A (1992), pp. 1221-1232

[23] H.K.D.H. Bhadeshia; D.V. Edmonds Bainite transformation in a silicon steel, Metall. Trans. A, Volume 10A (1979), pp. 895-907

[24] P. Jacques; X. Cornet; P. Harlet; J. Ladrière; F. Delannay Enhancement of the mechanical properties of a low-carbon, low-silicon steel by formation of a multiphased microstructure containing retained austenite, Metall. Mater. Trans. A, Volume 29A (1998), pp. 2383-2393

[25] D.-W. Suh; S.-J. Park; T.-H. Lee; C.-S. Oh; S.-J. Kim Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel, Metall. Mater. Trans. A, Volume 41A (2010), pp. 397-408

[26] O. Bouaziz; H. Zurob; M. Huang Driving force and logic of development of advanced high strength steels for automotive applications, Steel Res. Int., Volume 84 (2013), pp. 937-947

[27] G.B. Olson; M. Azrin Transformation behavior of TRIP steels, Metall. Trans. A, Volume 9A (1978), pp. 713-721

[28] J.-C. Hell; M. Dehmas; S. Allain; J.M. Prado; A. Hazotte; J.-P. Chateau Microstructure – properties relationships in carbide-free bainitic steels, ISIJ Int., Volume 51 (2011), pp. 1724-1732

[29] N.C. Goel; S. Sangal; K. Tangri A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: part I. Derivation of flow curve equations, Metall. Trans. A, Volume 16A (1985), pp. 2013-2021

[30] S. Sangal; N.C. Goel; K. Tangri A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: part II. Calculation of flow curves, Metall. Trans. A, Volume 16A (1985), pp. 2023-2029

[31] H. Karbasian; A.E. Takkaya A review on hot stamping, J. Mater. Process. Technol., Volume 210 (2010), pp. 2103-2118

[32] M.C. Somani; L.P. Karjalainen; M. Eriksson; M. Oldenburg Dimensional changes and microstructural evolution in a B-bearing steel in the simulated forming and quenching process, ISIJ Int., Volume 4 (2001), pp. 361-367

[33] S. Cobo; T. Sturel; A. Aouafi; C. Allely; D. Cornette Development of ultrahigh strength press hardened steel solution for structural autoparts with low sensitivity to hydrogen embrittlement, 29–31 May 2018, Ghent, Belgium (2018) (OCAS)

[34] M. Merklein; J. Lechler; M. Geiger Characterization of the flow properties of the quenchable ultra high strength steel 22MnB5, CIRP Ann., Volume 55 (2006), pp. 229-232

[35] A. Naganathan; L. Penter Hot stamping (T. Altan; A.E. Takkaya, eds.), Steel Metal Forming – Processes and Applications, ASM Int. Pub., 2012, pp. 133-156 (Ch. 7)

[36] Y.P. Jeon; Y. Se; J.D. Kim Experimental analysis of coating layer behavior of Al–Si-coated boron steel in a hot bending process for IT applications, Int. J. Adv. Manuf. Techol., Volume 67 (2013), pp. 1693-1700

[37] L. Vaissière; J.P. Laurent; A. Reinhardt Development of pre-coated boron steel for applications on PSA Peugeot Citroën and RENAULT bodies in white, SAE Transact.: J. Mater. Manuf., Volume 111 (2003), pp. 909-917

[38] Z.X. Gui; W.K. Liang; Y.S. Zhang Enhancing ductility of the Al–Si coating on hot stamping steel by controlling the Fe–Al phase transformation during austenitization, Sci. China, Technol. Sci., Volume 57 (2014), pp. 1785-1793

[39] M. Eriksson; M. Oldenburg; M.C. Somani; L.P. Karjalainen Testing and evaluation of material data for analysis of forming and hardening of boron steel components, Model. Simul. Mater. Sci. Eng., Volume 10 (2002), pp. 277-294

[40] P. Hein A global approach of the finite element simulation of hot stamping, Adv. Mater. Res., Volume 6–8 (2005), pp. 763-770

[41] D. Borisova; V. Klemm; S. Martin; S. Wolf; D. Rafaja Microstructure defects contributing to the energy absorption in CrMnNi TRIP steels, Adv. Eng. Mater., Volume 15 (2013), pp. 571-582

[42] N.K. Tewary; S.K. Ghosh; S. Chatterjee; A. Ghosh Deformation and annealing behavior of dual phase TWIP steel from the perspective of residual stress, faults, microstructures and mechanical properties, Mater. Sci. Eng. A, Volume 733 (2018), pp. 43-58

[43] O. Bouaziz; S. Allain; C.P. Scott; P. Cugy; D. Barbier High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships, Curr. Opin. Solid State Mater. Sci., Volume 15 (2011), pp. 141-168

[44] L. Remy; A. Pineau Twinning and Strain-induced F.C.C. → H.C.P. transformation in the Fe–Mn–Cr–C System, Mater. Sci. Eng., Volume 28 (1977), pp. 99-107

[45] L. Remy The interaction between slip and twinning systems and the influence of twinning on the mechanical behavior of fcc metals and alloys, Metall. Mater. Trans. A, Volume 12 (1981), pp. 387-408

[46] S. Allain; J.P. Chateau; O. Bouaziz A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel, Mater. Sci. Eng. A, Volume 387 (2004), pp. 143-147

[47] T.H. Lee; E. Shin; C.S. Oh; H.Y. Ha; S.J. Kim Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels, Acta Mater., Volume 58 (2010), pp. 3173-3186

[48] H. Idrissi; K. Renard; L. Ryelandt; D. Shryvers; P.J. Jacques On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater., Volume 58 (2010), pp. 2464-2476

[49] O. Bouaziz; N. Guelton Modeling of TWIP effect on work-hardening, Mater. Sci. Eng. A, Volume 319 (2001), pp. 246-249

[50] H. Mecking; U.F. Kocks Kinetics of flow and strain-hardening, Acta Metall., Volume 29 (1981), pp. 1865-1875

[51] L. Remy Kinetics of f.c.c. deformation twinning and its relationship to stress–strain behavior, Acta Metall., Volume 26 (1978), pp. 443-451

[52] I. Gutierrez-Urrutia; D. Raabe Dislocation and twin substructure evolution during strain hardening of an Fe–22wt.%Mn–0.6wt.%C TWIP steel observed by electron channeling contrast imaging, Acta Mater., Volume 59 (2011), pp. 6449-6462

[53] C. Scott; S. Allain; M. Faral; N. Guelton The development of a new Fe–Mn–C austenitic steel for automotive applications, Rev. Metall. CIT, Volume 103 (2006), pp. 293-302

[54] H. Idrissi; K. Renard; D. Schryvers; P.J. Jacques On the relationship between the twin internal structure and the work-hardening rate of TWIP steels, Scr. Mater., Volume 63 (2010), pp. 961-964

[55] S.-J. Lee; J. Kim; S.N. Kane; B.C. De Cooman On the origin of dynamic strain aging in twinning-induced plasticity steels, Acta Mater., Volume 59 (2011), pp. 6809-6819

[56] J. Lorthios; M. Mazière; X. Lemoine; P. Cugy; J. Besson; A-F. Gourgues-Lorenzon Fracture behaviour of a Fe–22Mn–0.6C–0.2V austenitic TWIP steel, Int. J. Mech. Solids, Volume 101–102 (2015), pp. 99-113

[57] T.S. Shun; C.M. Wan; J.G. Byrne A study of work-hardening in austenitic Fe–Me–C and Fe–Me–Al–C alloys, Acta Metall. Mater., Volume 40 (1992), pp. 3407-3412

[58] B. De Cooman; O. Kwon; K.-G. Chin State-of-the-knowledge on TWIP steels, Mater. Sci. Technol., Volume 28 (2012), pp. 513-527

[59] B. Malard; B. Remy; C.P. Scott; A. Deschamps; J. Chêne; T. Dieudonné; M.H. Mathon Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by Small-Angle Neutron Scattering, Mat. Sci. Eng. A, Volume 536 (2012), pp. 110-116

[60] T. Dieudonne; L. Marchetti; M. Wery; J. Chene; C. Allely; P. Cugy; C.P. Scott Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe–Mn–C TWIP steels, Corros. Sci., Volume 82 (2014), pp. 218-226

[61] Y.F. Gong; B.C. De Cooman Selective oxidation and sub-surface phase transformation of TWIP steel during continuous annealing, Steel Res. Int., Volume 82 (2011), pp. 1310-1318

[62] M.C. Jo; H. Lee; A. Zargaran; J.H. Ryu; S.S. Soh; N.J. Kim; S. Lee Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel, Mater. Sci. Eng. A, Volume 737 (2018), pp. 69-76

[63] J.G. Speer; D.V. Edmonds; F.C. Rizzo; D.K. Matlock Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., Volume 8 (2004), pp. 219-237

[64] R.L. Miller Ultrafine-grained microstructures and mechanical properties of alloy-steels, Metall. Trans., Volume 3 (1972), pp. 905-912

[65] A. Arlazarov; M. Gouné; O. Bouaziz; A. Hazotte; G. Petitgand; P. Barges Evolution of microstructure and mechanical properties of medium Mn steels during double annealing, Mater. Sci. Eng. A, Volume 542 (2012), pp. 31-39

[66] X.C. Xiong; B. Chen; M.X. Huang; J.F. Wang; L. Wang The effect of morphology on the stability of retained austenite in a quenched and partitioned steel, Scr. Mater., Volume 68 (2013), pp. 321-324

[67] H. Luo; J. Shi; C. Wang; W. Cao; X. Sun; H. Dong Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel, Acta Mater., Volume 59 (2011), pp. 4002-4014

[68] J. Speer; D.H. Matlock; B.C. De Cooman; J.G. Schroth Carbon partitioning into austenite after martensite transformation, Acta Mater., Volume 51 (2003), pp. 2611-2622

[69] S.Y.P. Allain; G. Geandier; J.C. Hell; M. Soler; F. Danoix; M. Gouné In-situ investigation of quenching and partitioning by high energy X-ray diffraction experiments, Scr. Mater., Volume 131 (2017), pp. 15-18

[70] A.J. Clarke; J.G. Speer; M.K. Miller; R.E. Hackenberg; D.V. Edmonds; D.H. Matlock; F.C. Rizzo; K.D. Clarke; E. De Moor Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment, Acta Mater., Volume 56 (2008), pp. 16-22

[71] I. de Diego-Calderón; I. Sabirov; J.M. Molina-Aldareguia; C. Föjer; R. Thiessen; R.H. Petrov Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture properties, Mater. Sci. Eng. A, Volume 657 (2016), pp. 136-146

[72] F. Hu; K.M. Wu Nanostructured high-carbon dual-phase steels, Scr. Mater., Volume 65 (2011), pp. 351-354

[73] M. Callahan; O. Hubert; F. Hild; A. Perlade; J.-H. Schmitt Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels, Mater. Sci. Eng. A, Volume 704 (2017), pp. 391-400

[74] A. Perlade; A. Antoni; R. Besson; D. Caillard; M. Callahan; J. Emo; A.-F. Gourgues; P. Maugis; A. Mestrallet; L. Thuinet; Q. Tonizzo; J.-H. Schmitt Development of 3rd generation Medium Mn duplex steels for automotive applications, Mater. Sci. Technol. (2018) (in press) | DOI

[75] A. Mestrallet Thermodynamique de nouvelles solutions d'aciers de 3e génération à structure duplex [Thermodynamics of new solutions for 3rd generation steels with a duplex microstructure], PhD thesis, Université Grenoble Alpes, Grenoble, France, 2017 https://tel.archives-ouvertes.fr/tel-01819772 (in French)

[76] J. Dequeker Modélisation à l'échelle atomique du système Fe–Al–Mn–C à l'aide de modèles de paires et de calculs thermodynamiques, Université de Lille, Lille, France, 2018

[77] J. Emo; P. Maugis; A. Perlade Austenite growth and stability in medium Mn, medium Al Fe–C–Mn–Al steels, Compos. Mater. Sci., Volume 125 (2016), pp. 206-217

[78] G. Frommeyer; U. Brüx Microstructures and mechanical properties of high-strength Fe–Mn–AI–C light-weight TRIPLEX steels, Steel Res. Int., Volume 77 (2006), pp. 627-633

[79] I. Gutierrez-Urrutia; D. Raabe Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scr. Mater., Volume 68 (2013), pp. 343-347

[80] H. Kim; D.W. Suh; N.J. Kim Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties, Sci. Technol. Adv. Mater., Volume 14 (2013)

[81] Y. Brechet; J.D. Embury Architectured materials: expanding materials space, Scr. Mater., Volume 68 (2013), pp. 1-3

[82] Q. Tonizzo; A.F. Gourgues-Lorenzon; M. Maziere; A. Perlade; I. Zuazo Microstructure, plastic flow and fracture behavior of ferrite–austenite duplex low density medium Mn steel, Mater. Sci. Eng. A, Volume 706 (2017), pp. 217-226

[83] Y. Vermeulen; B. Coletti; B. Blanpain; P. Wollants; J. Vleugels Material evaluation to prevent nozzle clogging during continuous casting of Al killed steels, ISIJ Int., Volume 42 (2002), pp. 1234-1240

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Lighter structures for transports: The role of innovation in metallurgy

Alexis Deschamps; Guilhem Martin; Rémy Dendievel; ...

C. R. Phys (2017)


Interface controlled plastic flow modelled by strain gradient plasticity theory

Thomas Pardoen; Thierry J. Massart

C. R. Méca (2012)


Fissile core and Tritium-Breeding Blanket: structural materials and their requirements

Jean-Louis Boutard; Ana Alamo; Rainer Lindau; ...

C. R. Phys (2008)