Comptes Rendus
Quantum simulation: From basic principles to applications Foreword
Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 357-364.
Publié le :
DOI : 10.1016/j.crhy.2018.11.005
Laurent Sanchez-Palencia 1

1 CPHT, École polytechnique, CNRS, Université Paris-Saclay, route de Saclay, 91128 Palaiseau cedex, France
@article{CRPHYS_2018__19_6_357_0,
     author = {Laurent Sanchez-Palencia},
     title = {Quantum simulation: {From} basic principles to applications {Foreword}},
     journal = {Comptes Rendus. Physique},
     pages = {357--364},
     publisher = {Elsevier},
     volume = {19},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crhy.2018.11.005},
     language = {en},
}
TY  - JOUR
AU  - Laurent Sanchez-Palencia
TI  - Quantum simulation: From basic principles to applications Foreword
JO  - Comptes Rendus. Physique
PY  - 2018
SP  - 357
EP  - 364
VL  - 19
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.11.005
LA  - en
ID  - CRPHYS_2018__19_6_357_0
ER  - 
%0 Journal Article
%A Laurent Sanchez-Palencia
%T Quantum simulation: From basic principles to applications Foreword
%J Comptes Rendus. Physique
%D 2018
%P 357-364
%V 19
%N 6
%I Elsevier
%R 10.1016/j.crhy.2018.11.005
%G en
%F CRPHYS_2018__19_6_357_0
Laurent Sanchez-Palencia. Quantum simulation: From basic principles to applications Foreword. Comptes Rendus. Physique, Volume 19 (2018) no. 6, pp. 357-364. doi : 10.1016/j.crhy.2018.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.11.005/

[1] L. Tarruell; L. Sanchez-Palencia Quantum simulation of the Hubbard model with ultracold fermions in optical lattices, C. R. Physique, Volume 19 (2018), pp. 365-393 ( in this issue )

[2] M. Aidelsburger; S. Nascimbene; N. Goldman Artificial gauge fields in materials and engineered systems, C. R. Physique, Volume 19 (2018), pp. 394-432 ( in this issue )

[3] J. Lebreuilly; I. Carusotto Quantum simulation of zero temperature quantum phases and incompressible states of light via non-Markovian reservoir engineering techniques, C. R. Physique, Volume 19 (2018), pp. 433-450 ( in this issue )

[4] K. Le Hur et al. Driven dissipative dynamics and topology of quantum impurity systems, C. R. Physique, Volume 19 (2018), pp. 451-483 ( in this issue )

[5] M. Bell; B. Douçot; M. Gershenson; L. Ioffe; A. Petkovic Josephson ladders as a model system for 1d quantum phase transitions, C. R. Physique, Volume 19 (2018), pp. 484-497 ( in this issue )

[6] F. Alet; N. Laflorencie Many-body localization: an introduction and selected topics, C. R. Physique, Volume 19 (2018), pp. 498-525 ( in this issue )

[7] I. Buluta; F. Nori Quantum simulators, Science, Volume 326 (2009), pp. 108-111

[8] I.M. Georgescu; S. Ashhab; F. Nori Quantum simulation, Rev. Mod. Phys., Volume 86 (2014), pp. 153-185

[9] J.I. Cirac; P. Zoller Goals and opportunities in quantum simulation, Nat. Phys., Volume 8 (2012), pp. 264-266

[10] I. Bloch; J. Dalibard; S. Nascimbène Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012), pp. 267-276

[11] R. Blatt; C.F. Roos Quantum simulations with trapped ions, Nat. Phys., Volume 8 (2012), pp. 277-284

[12] A. Aspuru-Guzik; P. Walther Photonic quantum simulators, Nat. Phys., Volume 8 (2012), pp. 285-291

[13] A.A. Houck; H.E. Tureci; J. Koch On-chip quantum simulation with superconducting circuits, Nat. Phys., Volume 8 (2012), pp. 292-299

[14] S. Ward et al. Spin ladders and quantum simulators for Tomonaga–Luttinger liquids, J. Phys. Condens. Matter, Volume 25 (2013)

[15] P.W. Anderson More is different, Science, Volume 177 (1972), pp. 393-396

[16] G. Mahan Many Particle Physics, Springer, New York, 2000

[17] H. Bruus; K. Flensberg Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, Oxford University Press, Oxford, UK, 2004

[18] A.M. Tsvelik Quantum Field Theory in Condensed Matter Physics, Cambridge University Press, Cambridge, UK, 2007

[19] R.P. Feynman Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982), pp. 467-488

[20] S. Lloyd Universal quantum simulators, Science, Volume 273 (1996), pp. 1073-1078

[21] Nature physics insight on quantum simulation, Nat. Phys., Volume 8 (2012), pp. 263-299

[22] P. Benioff The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys., Volume 22 (1980), pp. 563-591

[23] D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 400 (1985), pp. 97-117

[24] D.P. DiVincenzo Quantum computation, Science, Volume 270 (1995), pp. 255-261

[25] D.P. DiVincenzo The physical implementation of quantum computation, Fortschr. Phys., Volume 48 (2000), pp. 771-783

[26] P. Hauke; F.M. Cucchietti; L. Tagliacozzo; I. Deutsch; M. Lewenstein Can one trust quantum simulators?, Rep. Prog. Phys., Volume 75 (2012)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Exciton-polaritons in lattices: A non-linear photonic simulator

Alberto Amo; Jacqueline Bloch

C. R. Phys (2016)


Quantum simulation of disordered systems with cold atoms

Jean-Claude Garreau

C. R. Phys (2017)