Skip to main content
Log in

Mathematical models of cell colonization of uniformly growing domains

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

During the development of vertebrate embryos, cell migrations occur on an underlying tissue domain in response to some factor, such as nutrient. Over the time scale of days in which this cell migration occurs, the underlying tissue is itself growing. Consequently cell migration and colonization is strongly affected by the tissue domain growth. Numerical solutions for a mathematical model of chemotactic migration with no domain growth can lead to travelling waves of cells with constant velocity; the addition of domain growth can lead to travelling waves with nonconstant velocity. These observations suggest a mathematical approximation to the full system equations, allowing the method of characteristics to be applied to a simplified chemotactic migration model. The evolution of the leading front of the migrating cell wave is analysed. Linear, exponential and logistic uniform domain growths are considered. Successful colonization of a growing domain depends on the competition between cell migration velocity and the velocity and form of the domain growth, as well as the initial penetration distance of the cells. In some instances the cells will never successfully colonize the growing domain. These models provide an insight into cell migration during embryonic growth, and its dependence upon the form and timing of the domain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcuri, P. and J. D. Murray (1986). Pattern sensitivity to boundary conditions in reaction-diffusion models. J. Math. Biol. 24, 141–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Ashkenazi, M. and H. G. Othmer (1978). Spatial patterns in coupled biochemical oscillators. J. Math. Biol. 5, 305–350.

    MathSciNet  MATH  Google Scholar 

  • Balding, D. and D. L. S. McElwain (1991). A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73.

    Google Scholar 

  • Bates, D., G. I. Taylor and D. F. Newgreen (2002). The pattern of neurovascular development in the forelimb of the quail embryo. Dev. Biol. (in press).

  • Bellairs, R., P. Lear, K. M. Yamada, U. Rutishauser and J. W. Lash (1995). Posterior extension of the chick nephric (Wolffian) duct: the role of fibronectin and NCAM polysialic acid. Dev. Dyn. 202, 333–342.

    Google Scholar 

  • Bellairs, R. and M. Osmond (1998). The Atlas of Chick Development, San Diego: Academic Press.

    Google Scholar 

  • Byrne, H. M., M. A. J. Chaplain, G. J. Pettet and D. L. S. McElwain (1999). A mathematical model of trophoblast invasion. J. Theor. Med. 1, 275–286.

    MATH  Google Scholar 

  • Byrne, H. M., M. A. J. Chaplain, G. J. Pettet and D. L. S. McElwain (2001). An analysis of a mathematical model of trophoblast invasion. Appl. Math. Lett. 14, 1005–1010.

    Article  MATH  Google Scholar 

  • Chaplain, M. A. J., M. Ganesh and I. G. Graham (2001). Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplain, M. A. J. and A. A. Stuart (1993). A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168.

    MATH  Google Scholar 

  • Crampin, E. J. (2000). Reaction and diffusion patterns on growing domains, PhD thesis, University of Oxford, Oxford, UK.

    Google Scholar 

  • Crampin, E. J., E. A. Gaffney and P. K. Maini (1999). Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120.

    Article  Google Scholar 

  • Crampin, E. J., W. W. Hackborn and P. K. Maini (2002). Pattern formation in reaction-diffusion models with non-uniform domain growth. Bull. Math. Biol. 64, 747–769.

    Article  Google Scholar 

  • Crampin, E. J. and P. K. Maini (2001). Modelling biological pattern formation: the role of domain growth. Comments Theor. Biol. 6, 229–249.

    Google Scholar 

  • Dillon, R., P. K. Maini and H. G. Othmer (1994). Pattern formation in generalised turing systems I. steady-state patterns in systems with mixed boundary conditions. J. Math. Biol. 32, 345–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Dillon, R. and H. G. Othmer (1999). A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J. Theor. Biol. 197, 295–330.

    Article  Google Scholar 

  • Drawbridge, J., C. M. Meighan and E. A. Mitchell (2000). GDNF and GFRalpha-1 are components of the axolotl pronephric duct guidance system. Dev. Biol. 228, 116–124.

    Article  Google Scholar 

  • Gierer, A. and H. Meinhardt (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  Google Scholar 

  • Halloy, J., C. M. Bernard, G. Loussouarn and A. Goldbeter (2002). The follicular automaton model: effect of stochasticity and of synchronization of hair cycles. J. Theor. Biol. 214, 469–479.

    Article  Google Scholar 

  • Hamburger, V. and H. L. Hamilton (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92.

    Article  Google Scholar 

  • Harrison, L. G., S. Wehner and D. M. Holloway (2001). Complex morphogenesis of surfaces: theory and experiment on coupling of reaction diffusion patterning to growth. Faraday Discuss. 120, 277–294.

    Article  Google Scholar 

  • Hearn, C. J., M. Murphy and D. F. Newgreen (1998). GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev. Biol. 197, 93–105.

    Article  Google Scholar 

  • Holloway, D. M. and L. G. Harrison (1999). Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction-diffusion patterned catalysis of cell surface growth. Philos. Trans. R. Soc. Lond. B 354, 417–433.

    Article  Google Scholar 

  • Keller, E. F. and L. A. Segel (1971). Model for chemotaxis. J. Theor. Biol. 30, 225–234.

    Article  Google Scholar 

  • Kondo, S. and R. Asai (1995). A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768.

    Article  Google Scholar 

  • Landman, K. A., G. J. Pettet and D. F. Newgreen (2002). Chemotactic cellular migration: smooth and discontinuous travelling wave solutions with a singular barrier. SIAM J. Appl. Math. (submitted).

  • Maini, P. K. and M. Solursh (1991). Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol. 129, 91–133.

    Google Scholar 

  • Meinhardt, H. (1982). Models for Biological Pattern Formation, London: Academic Press.

    Google Scholar 

  • Meinhardt, H. (1995). The Algorithmic Beauty of Sea Shells, Heidelberg: Springer.

    Google Scholar 

  • Muneoka, K., N. Wanek and S. V. Bryant (1989). Mammalian limb bud development: in situ fate maps of early hindlimb buds. J. Exp. Zool. 249, 50–54.

    Article  Google Scholar 

  • Murray, J. D. (1982). Parameter space for Turing instability in reaction diffusion mechanisms: a comparison of models. J. Theor. Biol. 98, 143–163.

    Article  Google Scholar 

  • Murray, J. D. (1993). Mathematical Biology, 2nd edn, Heidelberg: Springer.

    MATH  Google Scholar 

  • Murray, J. D. and M. R. Myerscough (1991). Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339–360.

    Google Scholar 

  • Myerscough, M. R., P. K. Maini and K. J. Painter (1998). Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 126.

    Article  Google Scholar 

  • Nagorcka, B. N. and J. R. Mooney (1985). The role of a reaction-diffusion system in the initiation of primary hair follicles. J. Theor. Biol. 114, 243–272.

    MathSciNet  Google Scholar 

  • Newgreen, D. F. (1990). Control of the directional migration of mesenchyme cells and neurites. Semin. Dev. Biol. 1, 301–311.

    Google Scholar 

  • Newgreen, D. F. and L. Hartley (1995). Extracellular matrix and adhesive molecules in the early development of the gut and its innervation in normal and spotting lethal rat embryos. Acta Anat. 154, 243–260.

    Article  Google Scholar 

  • Newgreen, D. F., B. R. Southwell, L. Hartley and I. J. Allan (1996). Migration of enteric neural crest cells in relation to growth of the gut in avian embryos. Acta Anat. (Basel) 157, 105–115.

    Google Scholar 

  • Newgreen, D. and H. M. Young (2002a). The enteric nervous system: development and developmental disturbances: part 1. Perspect. Pediatr. Pathol. 5, 224–247.

    Google Scholar 

  • Newgreen, D. and H. M. Young (2002b). The enteric nervous system: development and developmental disturbances—part 2. Perspect. Pediatr. Pathol. 5, 329–349.

    Article  Google Scholar 

  • Painter, K. J. (1997). Chemotaxis as a mechanism formorphogenesis, PhD thesis, University of Oxford, Oxford, UK.

    Google Scholar 

  • Painter, K. J. (2000). Modelling of pigment patterns in fish, in Mathematical Models for Biological Pattern Formation IMA Volumes in Mathematics and its Applications, Vol. 121, P. K. Maini and H. G. Othmer (Eds), Berlin/Heidelberg: Springer, pp. 59–82.

    Google Scholar 

  • Painter, K. J., P. K. Maini and H. G. Othmer (1999). Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. PNAS 96, 5549–5554.

    Article  Google Scholar 

  • Painter, K. J., P. K. Maini and H. G. Othmer (2000). A chemotactic model for the advance and retreat of the primitive streak in avian development. PNAS. B. Math. Biol. 62, 501–525.

    Google Scholar 

  • Pettet, G. J., H. M. Byrne, D. L. S. McElwain and J. Norbury (1996). A model of wound-healing angiogenesis in soft tissue. Math. Biosci. 136, 35–63.

    Article  MATH  Google Scholar 

  • Poole, T. J. and M. S. Steinberg (1981). Amphibian pronephric duct morphogenesis: segregation, cell rearrangement and directed migration of the Ambystoma duct rudiment. J. Embryol. Exp. Morphol. 63, 1–16.

    Google Scholar 

  • Saunders, P. T. and M. W. Ho (1995). Reliable segmentation by successive bifurcation. Bull. Math. Biol. 57, 539–556.

    Article  MATH  Google Scholar 

  • Shin, M. K., J. M. Levorse, R. S. Ingram and S. M. Tilghman (1999). The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402, 496–501.

    Article  Google Scholar 

  • Stokes, C. L. and D. A. Lauffenburger (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72.

    Google Scholar 

  • Webster, W. (1973). Embryogenesis of the enteric ganglia in normal mice and in mice that develop congenital aganglionic megacolon. J. Embryol. Exp. Morphol. 30, 573–585.

    Google Scholar 

  • Whitham, G. B. (1974). Linear and Nonlinear Waves, New York: Wiley.

    MATH  Google Scholar 

  • Young, H. M., C. J. Hearn, P. G. Farlie, A. J. Canty, P. Q. Thomas and D. F. Newgreen (2001). GDNF is a chemoattractant for enteric neural cells. Dev. Biol. 229, 503–516.

    Article  Google Scholar 

  • Zackson, S. L. and M. S. Steinberg (1989). Axolotl pronephric duct cell migration is sensitive to phosphatidylinositol-specific phospholipase. C. Development 105, 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Pettet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landman, K.A., Pettet, G.J. & Newgreen, D.F. Mathematical models of cell colonization of uniformly growing domains. Bull. Math. Biol. 65, 235–262 (2003). https://doi.org/10.1016/S0092-8240(02)00098-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(02)00098-8

Keywords

Navigation