Skip to main content
Log in

Marine propellers performance and flow-field prediction by a free-wake panel method

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

A Boundary Element Method (BEM) hydrodynamics combined with a flow-alignment technique to evaluate blades shed vorticity is presented and applied to a marine propeller in open water. Potentialities and drawbacks of this approach in capturing propeller performance, slipstream velocities, blade pressure distribution and pressure disturbance in the flow-field are highlighted by comparisons with available experiments and RANSE results. In particular, correlations between the shape of the convected vortex-sheet and the accuracy of BEM results are discussed throughout the paper. To this aim, the analysis of propeller thrust and torque is the starting point towards a detailed discussion on the capability of a 3-D free-wake BEM hydrodynamic approach to describe the local features of the flow-field behind the propeller disk, in view of applications to propulsive configurations where the shed wake plays a dominant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KERWIN J. E., LEE C. S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory[J]. Society of Naval Architects and Marine Engineers-Transactions, 1978, 86: 1–30.

    Google Scholar 

  2. HOSHINO T. Hydrodynamic analysis of propellers in steady flow using a surface panel method, 2nd report: Flow field around propeller[J]. Journal of the Society of Naval Architects of Japan, 1989, 166: 79–92.

    Article  Google Scholar 

  3. GREELEY D. S., KERWIN J. E. Numerical methods for propeller design and analysis in steady flow[J]. Society of Naval Architects and Marine Engineers-Transactions, 1982, 90: 416–453.

    Google Scholar 

  4. KINNAS S. A., PYO S. Cavitating propeller analysis including the effects of wake alignment[J]. Journal of Ship Research, 1999, 43(1): 38–47.

    Google Scholar 

  5. LIU P., COLBOURNE B. A study of wake discretization in relation to the performance of a propeller panel method[J]. Ocean Engineering International, 2002, 6(1): 32–39.

    Google Scholar 

  6. POLITIS G. K. Unsteady rollup modeling for wake-adapted propellers using a time-stepping method[J]. Journal of Ship Research, 2005, 49(3): 216–231.

    Google Scholar 

  7. TIAN Y., KINNAS S. A. A wake model for the prediction of propeller performance at low advance ratios[J]. International Journal of Rotating Machinery, 2012, 2012: doi: 10.1155/2012/372364.

    Google Scholar 

  8. KINNAS S. A., TIAN Y. and SHARMA A. Numerical modeling of a marine propeller undergoing surge and heave motion[J]. International Journal of Rotating Machinery, 2012, 2012: doi:10.1155/2012/257461.

    Google Scholar 

  9. DURANTE D., DUBBIOSO G. and TESTA C. Simplified hydrodynamic models for the analysis of marine propellers in a wake-field[J]. Journal of Hydrodynamics, 2013, 25(6): 954–965.

    Article  Google Scholar 

  10. TESTA C., IANNIELLO S. and SALVATORE F. et al. Numerical approaches for hydroacoustic analysis of marine propellers[J]. Journal of Ship Research, 2008, 52(1): 57–70.

    Google Scholar 

  11. GENNARETTI M., TESTA C. and BERNARDINI G. An unsteady aerodynamic formulation for efficient rotor tonal noise prediction[J]. Journal of Sound and Vibration, 2013, 332(25): 6743–6754.

    Article  Google Scholar 

  12. SALVATORE F., TESTA C. and GRECO L. A viscous/inviscid coupled formulation for unsteady sheet cavitation modelling of marine propellers[C]. Cav 2003 Symposium. Osaka, Japan, 2003.

    Google Scholar 

  13. SALVATORE F., TESTA C. and GRECO L. Coupled hydrodynamics-hydroacoustics BEM modelling of ma-rine propellers operating in a wakefield[C]. 1st Inter-national Symposium on Marine Propulsion (SMP 2009). Trondheim, Norway, 2009.

    Google Scholar 

  14. MUSCARI R., FELLI M. and Di MASCIO A. Analysis of the flow past a fully appended hull with propellers by computational and experimental fluid dynamics[J]. Journal of Fluids Engineering, 2011, 133(6): 061104.

    Article  Google Scholar 

  15. MUSCARI R., DI MASCIO A. and VERZICCO R. Modeling of vortex dynamics in the wake of a marine propeller[J]. Computers and Fluids, 2013, 73: 65–79.

    Article  MathSciNet  Google Scholar 

  16. GRECO L., SALVATORE F. and DI FELICE F. Validation of a quasi-potential flow model for the analysis of marine propellers wake[C]. 25th Onr Symposium on Naval Hydrodynamics. St. John’s, Canada, 2004.

    Google Scholar 

  17. MORINO L. Boundary integral equations in aerodyne-mics[J]. Applied Mechanics Reviews, 1993, 46(8): 445–466.

    Article  Google Scholar 

  18. CARLTON J. S. Marine propellers and propulsion[M]. Third Edition, Oxford, UK: Butterworth-Heinemann, 2012.

    Google Scholar 

  19. GRIGSON C. W. B. A planar friction algorithm and its use in analysing hull resistance[J]. Transactions of the Royal Institution of Naval Architects, 2000, 142: 76–115.

    Google Scholar 

  20. LEONE S., TESTA C. and GRECO L. et al. Computational analysis of self-pitching propellers performance in open water[J]. Ocean Engineering, 2013, 64: 122–134.

    Article  Google Scholar 

  21. SUCIU E., MORINO L. Non linear steady incompressible lifting-surface analysis with wake roll-up[J]. Aiaa Journal, 1977, 15(1): 54–58.

    Article  Google Scholar 

  22. Di MASCIO A., BROGLIA R. and MUSCARI R. Prediction of hydrodynamic coefficients of ship hulls by high-order Godunov-type methods[J]. Journal of Marine Science and Technology, 2009, 14(1): 19–29.

    Article  Google Scholar 

  23. MERKLE C. L., ATHAVALE M. Time-accurate unsteady incompressible flow algorithm based on artificial compressibility[R]. Aiaa Paper 87–1137, 1987.

    Google Scholar 

  24. BEAM R. M., WARMING R. F. An implicit factored scheme for the compressible Navier-Stokes equations[J]. AIAA Journal, 1978, 16(4): 393–402.

    Article  Google Scholar 

  25. FAVINI B., BROGLIA R. and Di MASCIO A. Multigrid acceleration of second order Eno schemes from low subsonic to high supersonic flows[J]. International Journal of Numerical Method Fluids, 1996, 23(6): 589–606.

    Article  Google Scholar 

  26. DI FELICE F., DI FLORIO D. and FELLI M. et al. Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry[J]. Journal of Ship Research, 2004, 48(2): 168–190.

    Google Scholar 

  27. ROACHE P. J. Quantification of uncertainty in computational fluid dynamics[J]. Annual Review Fluid Mechanics, 1997, 29: 123–160.

    Article  MathSciNet  Google Scholar 

  28. JEONG J., HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  Google Scholar 

  29. FELLI M., CAMUSSI R. and DI FELICE F. Mechanisms of evolution of the propeller wake in the transition and far fields[J]. Journal of Fluid Mechanics, 2011, 682: 5–53.

    Article  Google Scholar 

  30. KERWIN J. E., KINNAS S. A. and LEE J.-T. et al. A surface panel method for the hydrodynamic analysis of ducted propellers[J]. Society of Naval Architects and Marine Engineers-Transactions, 1987, 95: 93–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Biography: GRECO Luca (1976-), Male, Ph. D., Researcher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, L., Muscari, R., Testa, C. et al. Marine propellers performance and flow-field prediction by a free-wake panel method. J Hydrodyn 26, 780–795 (2014). https://doi.org/10.1016/S1001-6058(14)60087-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(14)60087-1

Key words

Navigation