Skip to main content
Log in

A review of cavitation in hydraulic machinery

  • Review article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper mainly summarizes the recent progresses for the cavitation study in the hydraulic machinery including turbo-pumps, hydro turbines, etc.. Especially, the newly developed numerical methods for simulating cavitating turbulent flows and the achievements with regard to the complicated flow features revealed by using advanced optical techniques as well as cavitation simulation are introduced so as to make a better understanding of the cavitating flow mechanism for hydraulic machinery. Since cavitation instabilities are also vital issue and rather harmful for the operation safety of hydro machines, we present the 1-D analysis method, which is identified to be very useful for engineering applications regarding the cavitating flows in inducers, turbine draft tubes, etc. Though both cavitation and hydraulic machinery are extensively discussed in literatures, one should be aware that a few problems still remains and are open for solution, such as the comprehensive understanding of cavitating turbulent flows especially inside hydro turbines, the unneglectable discrepancies between the numerical and experimental data, etc.. To further promote the study of cavitation in hydraulic machinery, some advanced topics such as a Density-Based solver suitable for highly compressible cavitating turbulent flows, a virtual cavitation tunnel, etc. are addressed for the future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LUO Xian-wu, ZHU Lie and ZHUANG Bao-tang et al. A novel shaft-less double suction mini pump[J]. Science China Technological Science, 2010, 53(1): 105–110.

    Article  Google Scholar 

  2. LIU Feng, CUI Wei-cheng and LI Xiang-yang. China’s first deep manned submersible, Jiaolong[J]. Science China Earth Science, 2010, 53(10): 1407–1410.

    Article  Google Scholar 

  3. LU Li, LIU Juan and YI Yan-lin et al. Evaluation on sand abrasion to Baihetan hydraulic turbines[J]. Journal of Hydroelectric Engineering, 2016, 35(2): 67–74(in Chinese)

    Google Scholar 

  4. ARNDT R. E. A. Cavitation in fluid machinery and hydraulic structures[J]. Annual Review of Fluid Mechanics, 1981, 13: 273–328.

    Article  Google Scholar 

  5. BRENNEN C. E. Hydrodynamics of pumps[M]. Norwich, Vt, USA: Concepts Eti Inc., 1994.

    MATH  Google Scholar 

  6. BRENNEN C. E., TSUJIMOTO Y. Hydrodynamics of pumps[M]. Osaka, Japan: Osaka University Press, 1998.

    Google Scholar 

  7. FRANC J.-P., MICHEL J.-M. Fundamentals of cavitation[M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004.

    MATH  Google Scholar 

  8. d’AGOSTINO L., SALVETTI M. V. Fluid dynamics of cavitation and cavitating turbopumps[M]. Udine, Italy: Springer, 2007.

    Book  MATH  Google Scholar 

  9. AVELLAN F.. 6th International Conference on Hydraulic Machinery and Hydrodynamics. Timisoara, Romania, 2004.

    Google Scholar 

  10. ESCALER X., EGUSQUIZA E. and FARHAT M. et al. Detection of cavitation in hydraulic turbines[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 983–1007.

    Article  Google Scholar 

  11. KUMAR P., SAINI R. P. Study of cavitation in hydro turbines-A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 374–383.

    Article  MathSciNet  Google Scholar 

  12. NISHI M., LIU S. An outlook on the draft tube surge study[J]. International Journal of Fluid Machinery and Systems, 2013, 6(1): 33–48.

    Article  Google Scholar 

  13. JI B., LUO X. and WANG X. et al. Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller[J]. Journal of Fluids Engineering, 2011, 133(1): 011102.

    Article  Google Scholar 

  14. LUO X., WEI W. and JI B. et al. Comparison of cavitation prediction for a centrifugal pump with or without volute casing[J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1643–1648.

    Article  Google Scholar 

  15. AHUJA V., HOSANGADI A. and ARUNAJATESAN S. Simulations of cavitating flows using hybrid unstructured meshes[J]. Journal of Fluids Engineering, 2001, 123(2): 331–340.

    Article  Google Scholar 

  16. SINGHAL A. K., ATHAVALE M. M. and LI H. Y. et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617–624.

    Article  Google Scholar 

  17. SCHNERR G. H., SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]. 4th International Conference on Multiphase Flow. New Orleans, USA, 2001.

    MATH  Google Scholar 

  18. YU An, LUO Xian-wu and JI Bin et al. Cavitation simulation with consideration of viscous effect at large liquid temperature variation[J]. Chinese Physics Letters, 2014, 31(8): 086401.

    Article  Google Scholar 

  19. ZHANG Yao, LUO Xian-wu and JI Bin et al. A thermo-dynamic cavitation model for cavitating flow simulation in a wide range of water temperatures[J]. Chinese Physics Letters, 2010, 27(1): 016401.

    Article  Google Scholar 

  20. LIU D. M., LIU S. H. and WU Y. L. et al. A Thermodynamic cavitation model applicable to high temperature flow[J]. Thermal Science, 2011, 15(Suppl. 1): 95–101

    Google Scholar 

  21. ZHANG Xiao-bin, WU Zhao and XIANG Shi-jun et al. Modeling cavitation flow of cryogenic fluids with thermo-dynamic phase-change theory[J]. Chinese Science Bulletin, 2013, 58(4): 567–574.

    Article  Google Scholar 

  22. LINDAU J. W., KUNZ R. F. and BOGER D. A. et al. High Reynolds number, unsteady, multiphase Cfd modeling of cavitating flows[J]. Journal of Fluids Engineering, 2002, 124(3): 607–616.

    Article  Google Scholar 

  23. JI Bin, LUO Xian-wu and ZHANG Yao et al. A three-component model suitable for natural and ventilated cavi-tation[J]. Chinese Physics Letters, 2010, 27(9): 096401.

    Article  Google Scholar 

  24. JI Bin, LUO Xian-wu and PENG Xiao-xing et al. Numerical investigation of the ventilated cavitating flow around an under-water vehicle based on a three-component cavi-tation model[J]. Journal of Hydrodynamics, 2010, 22(6): 753–759

    Article  Google Scholar 

  25. YU An, LUO Xian-wu and JI Bin. Analysis of ventilated cavitation around a cylinder vehicle with nature cavitation using a new simulation method[J]. Science Bulletin, 2015, 60(21): 1833–1839.

    Article  Google Scholar 

  26. JOHANSEN S. T., WU J. and SHYY W. Filter-based unsteady Rans computations[J]. International Journal of Heat and fluid flow, 2004, 25(1): 10–21.

    Article  Google Scholar 

  27. WU J., WANG G. and SHYY W. Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models[J]. International Journal for Numerical Methods for Fluids, 2005, 49(7): 739–761.

    Article  MATH  Google Scholar 

  28. HUANG Biao, WANG Guo-yu and ZHAO Yu. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model[J]. Journal of Hydrodynamics, 2014, 26(1): 26–36.

    Article  Google Scholar 

  29. YU An, JI Bin and HUANG Ren-fang et al. Cavitation shedding dynamics around a hydrofoil simulated using a filter-based density corrected model[J]. Science China Technological Science, 2015, 58(5): 864–869.

    Article  Google Scholar 

  30. GIRIMAJI S. S. Partially-averaged Navier-Stokes model for turbulence: A Rans to Dns bridging model[J]. Journal of Applied Mechanics, 2006, 73(3): 413–421.

    Article  MATH  Google Scholar 

  31. JI Bin, LUO Xian-wu and WU Yu-lin et al. Unsteady cavitating flow around a hydrofoil simulated using the partially-averaged Navier–Stokes Model[J]. Chinese Physics Letters, 2012, 29(7): 076401.

    Article  Google Scholar 

  32. HU Chang-li, WANG Guo-yu and CHEN Guang-hao et al. A modified Pans model for computations of unsteady turbulence for cavitating flows[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(10): 1967–1976.

    Article  Google Scholar 

  33. STERN Frederick, WANG Zhaoyuan and YANG Jianming et al. Recent progress in Cfd for naval architecture and ocean engineering[J]. Journal of Hydrodynamics, 2015, 27(1): 1–23.

    Article  Google Scholar 

  34. JI B., LUO X. W. and ARNDT R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a Naca66 hy-drofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121–134.

    Article  MathSciNet  Google Scholar 

  35. LU T., SAMULYAK R. and GLIMM J. Direct numerical simulation of bubbly flows and application to cavitation mitigation[J]. Journal of Fluids Engineering, 2007, 129(5): 595–604.

    Article  Google Scholar 

  36. LIU H., WANG J. and WANG Y. et al. Partially-averaged Navier-Stokes model for predicting cavitating flow in centrifugal pump[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 319–329.

    Article  Google Scholar 

  37. LUO Xian-wu, JI Bin and XU Hong-yuan. Design and optimization for fluid machinery[M]. Beijing, China: Tsinghua University Press, 2012, 22–30(in Chinese).

    Google Scholar 

  38. GÜLICH J. F. Centrifugal pumps[M]. Second Edition, Heidelberg, Germany: Springer 2010, 259–335.

    Book  Google Scholar 

  39. DING H., VISSER F. and JIANG Y. et al. Demonstration and validation of a 3D Cfd simulation tool predicting pump performance and cavitation for industrial applications[J]. Journal of Fluids Engineering, 2011, 133(1): 011101.

    Article  Google Scholar 

  40. MEDVITZ R. B., KUNZ R. F. and BOGER D. A. et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase Cfd[J]. Journal of Fluids Engineering, 2002, 124(6): 377–383.

    Article  Google Scholar 

  41. PIERRAT D., GROS L. and PINTRAND G. et al. Experimental and numerical investigations of leading edge cavi-tation in a helico-centrifugal pump[C]. 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Honolulu, Hawaii, Usa, 2008.

    Google Scholar 

  42. COUTIER-DELGOSHA O., FORTES-PATELLA R. and REBOUD J. L. et al. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition[J]. Journal of Fluids Engineering, 2003, 125(6): 970–978.

    Article  Google Scholar 

  43. TAN L., ZHU B. S. and CAO S. L. et al. Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(11): 1994–2006.

    Google Scholar 

  44. LUO X., LIU S. and ZHANG Y. et al. Cavitation in semi-open centrifugal impellers for a miniature pump[J]. Frontier of Energy and Power Engineering in China, 2008, 2(1): 31–35.

    Article  Google Scholar 

  45. SHI W., WANG C. and WANG W. et al. Numerical calculation on cavitation pressure pulsation in centrifugal pump[J]. Advances in Mechanical Engineering, 2014, 1: 367631.

  46. LI W. Modeling viscous oil cavitating flow in a centrifugal pump[J]. Journal of Fluids Engineering, 2016, 138(1): 011303.

    Article  Google Scholar 

  47. LIU Hou-lin, LIU Dong-xi and WANG Yong et al. Application of modified k-ω model to predicting cavitating flow in centrifugal pump[J]. Water Science and Engineering, 2013, 6(3): 331–339.

    Google Scholar 

  48. LIU H., WANG J. and WANG Y. et al. Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(1): 119–131.

    Article  Google Scholar 

  49. SHAH S. R., JAIN S. V. and PATEL R. N. et al. Cfd for centrifugal pumps: a review of the state-of-the-art[J]. Pro-cedia Engineering, 2013, 51: 715–720.

    Article  Google Scholar 

  50. DONG R., CHU S. and KATZ J. Quantitative visualization of the flow within the volute of a centrifugal pump. Part B: results and analysis[J]. Journal of Fluids Engineering, 1992, 114(3): 396–403.

    Article  Google Scholar 

  51. FRIEDRICHS J., KOSYNA G. Unsteady Piv flow field analysis of a centrifugal pump impeller under rotating cavitation[C]. 5th International Symposium on Cavitation. Osaka, Japan, 2003.

    Google Scholar 

  52. HOFMANN M., STOFFEL B. and FRIEDRICHS J. et al. Similarities and geometrical effects on rotating cavitation in two scaled centrifugal pumps[C]. 4th International Symposium on Cavitation. Pasadena, Cpa, Usa, 2001.

    Google Scholar 

  53. FRIEDRICHS J., KOSYNA G. Rotating cavitation in a centrifugal pump impeller of low specific speed[J]. Journal of Fluids Engineering, 2002, 124(6): 356–362.

    Article  Google Scholar 

  54. FRANZ R., ACOSTA A. J. and BRENNEN C. E. et al. The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation[J]. Journal of Fluids Engineering, 1990, 112(3): 264–271.

    Article  Google Scholar 

  55. D’AGOSTINO L., VENTURINI-AUTIERI M. R. Rotor-dynamic fluid forces on whirling and cavitating radial impellers[C]. 5th International Symposium on Cavitation. Osaka, Japan. 2003, Os4-002.

    Google Scholar 

  56. OWEN D. R. J. Influence of impeller-tongue interaction on the unsteady cavitation behavior in a centrifugal pump[J]. Engineering Computations, 2016, 33(1): 171–183.

    Article  Google Scholar 

  57. DONG R., CHU S. and KATZ J. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations and noise in a centrifugal pump[J]. Journal of Fluids Engineering, 1997, 119(7): 506–515.

    Google Scholar 

  58. YANG W., XIAO R. and WANG F. et al. Influence of splitter blades on the cavitation performance of a double suction centrifugal pump[J]. Advances in Mechanical Engineering, 2014, 6(1): 963197.

    Google Scholar 

  59. GUO X., ZHU L. and ZHU Z. et al. Numerical and experimental investigations on the cavitation characteristics of a high-speed centrifugal pump with a splitter-blade indu-cer[J]. Journal of Mechanical Science and Technology, 2015, 29(1): 259–267.

    Article  Google Scholar 

  60. GUO Xiao-mei, ZHU Zu-chao and CUI Bao-ling et al. Anti-cavitation performance of a splitter-bladed inducer under different flow rates and different inlet pressures[J]. Science China Technological Sciences, 2015, 58(12): 2131–2138.

    Article  Google Scholar 

  61. LUO X., ZHANG Y. and PENG J. et al. Impeller inlet geometry effect on performance improvement for centrifugal pumps[J]. Journal of Mechanical Science and Technology, 2008, 22(10): 1971–1976.

    Article  Google Scholar 

  62. TAN L., ZHU B. and CAO S. et al. Influence of prewhirl regulation by inlet guide vanes on cavitation performance of a centrifugal pump[J]. Energies, 2014, 7(2): 1050–1065.

    Article  Google Scholar 

  63. MITCHELL A. B. An Experimental investigation of cavitation inception in the rotor blade tip region of an axial flow pump[R]. A. R. C. Technical Report, (21, 591), C. P. No. 527, S. O. Code No. 23–9012–27, 1961.

    Google Scholar 

  64. TAN D. Y., MIORINI R. L. and KELLER J. et al. Flow visualization using cavitation within blade passage of an axial water jet pump rotor[C]. Asme Fluids Engineering Summer Meeting. Rio Grande, Puerto Rico, 2012.

    Google Scholar 

  65. SEMENOV Y., FUJII A. and TSUJIMOTO Y. Rotating choke in cavitating turbopump inducer[J]. Journal of Fluids Engineering, 2004, 126(1): 87–93.

    Article  Google Scholar 

  66. KAMIJO K., SHIMURA T. and WATANABE M. A visual observation of cavitating inducer instability[R]. Technical Report of National Aerospace Laboratory, 1980, Tr-598T.

    Google Scholar 

  67. STRAKA W. A., FARRELL K. J. The effect of spatial wandering on experimental laser velocimeter measurements of the endwall vortices in an axial flow pump[J]. Experiments in Fluids, 1992, 13(2): 163–170.

    Article  Google Scholar 

  68. TABAR M. T. S., POURSHARIFI Z. An experimental study of tip vortex cavitation inception in an axial flow pump[J]. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2011, 5(1): 86–89.

    Google Scholar 

  69. LABORDE R., CHANTREL P. and MORY M. Tip clearance and tip vortex cavitation in an axial flow pump[J]. Journal of Fluids Engineering, 1997, 119(3): 680–685.

    Article  Google Scholar 

  70. GOLTZ I., KOSYNA G. and STARK U. et al. Stall inception phenomena in a single-stage axial-flow pump[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217: 471–479.

    Google Scholar 

  71. WU H., MIORINI R. L. and KATZ J. Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump[J]. Experiments in Fluids, 2011, 50(4): 989–1003.

    Article  Google Scholar 

  72. WU H., TAN D, MIORINI R. L. et al. Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade[J]. Experiments in Fluids, 2011, 51(6): 1721–1737.

    Article  Google Scholar 

  73. WU H., MIORINI R. L. and TAN D. et al. Turbulence within the tip-leakage vortex of an axial waterjet pump[J]. Aiaa Journal, 2012, 50(11): 2574–2587.

    Article  Google Scholar 

  74. KIM J., SONG S. J. Measurement of temperature effects on cavitation in a turbopump inducer[J]. Journal of Fluids Engineering, 2016, 138(1): 011304.

    Google Scholar 

  75. ZHANG Rui, CHEN Hong-xun. Numerical analysis of cavitation within slanted axial-flow pump[J]. Journal of Hydrodynamics, 2013, 25(5): 663–672.

    Article  Google Scholar 

  76. SAITO S., SHIBATA M. and FUKAE H. et al. Computational cavitation flows at inception and light stages on an axial-flow pump blade and in a cage-guided control valve[J]. Journal of Thermal Science, 2007, 16(4): 337–345.

    Article  Google Scholar 

  77. LIU Zhi-hui, WANG Ben-long and PENG Xiao-xing et al. Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear k-ε turbulence model[J]. Journal of Hydrodynamics, 2016, 28(2): 227–237.

    Article  Google Scholar 

  78. FUKAYA M., TAMURA Y. and MATSUMOTO Y. Prediction of suction specific speed of axial flow pump by using numerical simulation with bubble flow model[J]. Turbomachinery, 2002, 30(10): 595–602.

    Google Scholar 

  79. KUBOTA A., KATO H. and YAMAGUCHI H. A new modeling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240: 59–96

    Article  Google Scholar 

  80. FARRELL K. J., BILLET M. L. A correlation of leakage vortex cavitation in axial-flow pumps[J]. Journal of Fluids Engineering, 1994, 116(3): 551–557.

    Article  Google Scholar 

  81. TANI N., YAMANISHI N. and TSUJIMOTO Y. Influence of flow coefficient and flow structure on rotational cavitation in inducer[J]. Journal of Fluids Engineering, 2012, 134(2): 1–13.

    Article  Google Scholar 

  82. YOU D., WANG M. and MOIN P. et al. Effects of tip-gap size on the tip-leakage flow in a turbomachinery casca-de[J]. Physics of Fluids, 2006, 18(10): 105102.

    Google Scholar 

  83. YOU D., WANG M. and MOIN P. et al. Vortex dynamics and low-pressure fluctuations in the tip-clearance flow[J]. Journal of Fluids Engineering, 2007, 129(8): 1002–1014.

    Article  Google Scholar 

  84. ZHANG D., SHI L. and SHI W. et al. Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump[J]. International Journal of Multiphase Flow, 2015, 77: 244–259.

    Article  Google Scholar 

  85. ZHANG D., SHI W. and VAN ESCH B. P. M. (Bart) et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump[J]. Computers and Fluids, 2015, 112(1): 61–71.

    Article  Google Scholar 

  86. FLORES N. G., GONCALVØS E. and PATELLA R. F. et al. Head drop of a spatial turbopump inducer[J]. Journal of Fluids Engineering, 2008, 130(11): 111301.

    Google Scholar 

  87. HUANG R., JI B. and LUO X. et al. Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump[J]. Journal of Mechanical Science and Technology, 2015, 29(9): 3707–3716

    Article  Google Scholar 

  88. MEJRI I., BAKIR F. and REY R. et al. Comparison of computational results obtained from a homogeneous cavi-tation model with experimental investigations of three inducers[J]. Journal of Fluids Engineering, 2006, 128(12): 1308–1323.

    Article  Google Scholar 

  89. AMEZCUA R. C., KHELLADI S. and CZERWIEC Z. M. et al. Numerical and experimental study of cavitating flow through an axial inducer considering tip clearance[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2013, 227(8): 858–868.

    Google Scholar 

  90. FRUMAN D. H., AFLALO S. S. Tip vortex cavitation inhibition by drag-reducing polymer solutions[J]. Journal of Fluids Engineering, 1989, 111(2): 211–215.

    Article  Google Scholar 

  91. FRUMAN D. H., PICHON T. and CERRUTTI P. Effect of drag reducing polymer solution ejection on tip vortex cavitation[J]. Journal of Marine Science and Technology, 1995, 1(1): 13–23.

    Article  Google Scholar 

  92. CHANG N., GANESH H. and YAKUSHIJI R. et al. Tip vortex cavitation suppression by active mass injection[J]. Journal of Fluids Engineering, 2011, 133(11): 111301.

    Google Scholar 

  93. POUFFARY B., PATELLA F. R. and REBOUD J. L. et al. Numerical analysis of cavitation instabilities in inducer blade cascade[J]. Journal of Fluids Engineering, 2008, 130(4): 1–8.

    Article  Google Scholar 

  94. KANG D., YONEZAWA K. and HORIGUCHI H. et al. Cause of cavitation instabilities in three dimensional indu-cer[J]. International Journal of Fluid Machinery and Systems, 2009, 2(3): 206–214.

    Article  Google Scholar 

  95. TSUJIMOTO Y., HORIGUCHI H. and FUJII A. Nonstandard cavitation instabilities in inducers[C]. 10th International Symposium on Heat Transfer and Dynamics of Rotating Machinery. Honolulu, USA, 2004.

    Google Scholar 

  96. TSUJIMOTO Y., SEMENOV Y. New types of cavitation instabilities in inducers[C]. 4th International Symposium on Launcher Technology. Liege, Belgium, 2002.

    Google Scholar 

  97. KOBAYASHI S. Effects of shaft vibration on occurrence of asymmetric cavitation in inducer[J]. Jsme International Journal, Series B, 2006, 49(4): 1220–1225.

    Article  MathSciNet  Google Scholar 

  98. HASHIMOTO T., YOSHIDA M. and KAMIJYO K. et al. Experimental study on rotating cavitation of rocket propellant pump inducers[J]. Journal of Propulsion and Power, 1997, 13(4): 488–494.

    Article  Google Scholar 

  99. CERVONE A., BRAMANTI C. and RAPPOSELLI E. Experimental characterization of cavitation instabilities in a two-bladed axial inducer[J]. Journal of Propulsion and Power, 2006, 22(6): 1389–1395.

    Article  Google Scholar 

  100. FORTES-PATELLA R., COUTIER-DELGOSHA O. and PERRIN J. et al. Numerical model to predict unsteady cavitating flow behavior in inducer blade cascades[J]. Journal of Fluids Engineering, 2006, 129(2): 128–135.

    Article  Google Scholar 

  101. HOSANGADI A., AHUJA V. and UNGEWITTER R. J. Simulation of cavitation instabilities in inducers[C]. 7th International Symposium on Cavitation. Michigan, USA, 2009.

    Google Scholar 

  102. COUTIER-DELGOSHA O., DAZIN A. and CAIGNA-ERT G. et al. Analysis of cavitation instabilities in a four-blade inducer[J]. International Journal of Rotating Machinery, 2012, Article Id 213907.

    Google Scholar 

  103. COUTIER-DELGOSHA O., COURTOT Y. and JOU-SSELLIN F. et al. Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade[J]. Aiaa Journal, 2004, 42(3): 560–569.

    Article  Google Scholar 

  104. LEE K.-H., CHOI J.-W. and KANG S.-H. Cavitation performance and instability of a two-bladed inducer[J]. Journal of Propulsion and Power, 2012, 28(6): 1168–1175.

    Article  Google Scholar 

  105. WATANABE S., SATO K. and TSUJIMOTO Y. et al. Analysis of rotating cavitation in a finite pitch cascade using a closed cavity model and a singularity method[J]. Journal of Fluids Engineering, 1999, 121(4): 834–840.

    Article  Google Scholar 

  106. HORIGUCHI H., WATANABE S. and TSUJIMOTO Y. A linear stability analysis of cavitation in a finite blade count impeller[J]. Journal of Fluids Engineering, 2000, 122(4): 798–805.

    Article  Google Scholar 

  107. SHIMURA T., YISHIDA M. and KAMIJO K. et al. A rotating stall type phenomenon caused by cavitation in Le-7A Lh2 turbopump[J]. Jsme International Journal, Series B, 2002, 45(1): 41–46.

    Article  Google Scholar 

  108. TSUJIMOTO Y., KAMIJIO K. and YOSHIDA Y. A theoretical analysis of rotating cavitation in inducers[J]. Journal of Fluids Engineering, 1993, 115(1): 135–141.

    Article  Google Scholar 

  109. TSUJIMOTO Y., KAMIJO K. and BRENNEN C. Unified treatment of cavitation instabilities of turbomachi-nes[J]. Journal of Propulsion and Power, 2001, 17(3): 636–643.

    Article  Google Scholar 

  110. TSUJIMOTO Y., YOSHIDA Y. and MAEKAWA Y. et al. Observations of oscillating cavitation of an inducer[J]. Journal of Fluids Engineering, 1997, 119(4): 775–781.

    Article  Google Scholar 

  111. WATANABE T., SATO H. and HENMI Y. et al. Rotating choke and choked surge in an axial pump impeller[J]. International Journal of Fluid Machinery and Systems, 2009, 2 (3): 232–238.

    Article  Google Scholar 

  112. WATANABE T., KANG D. and CERVONE A. et al. Choked surge in a cavitating turbopump inducer[J]. International Journal of Fluid Machinery and Systems, 2008, 1(1): 64–75.

    Article  Google Scholar 

  113. ZENG C. J., XIAO Y. X. and ZHU W. et al. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface[J]. Iop Conference Series: Materials Science and Engineering, 2015, 72(4): 042043.

    Article  Google Scholar 

  114. ROSSETTI A., PAVESI G. and ARDIZZON G. et al. Numerical analyses of cavitating flow in a Pelton turbi-ne[J]. Journal of Fluids Engineering, 2014, 136(8): 081304.

    Article  Google Scholar 

  115. HUANG Yuan-fang, LIU Guang-ning and FAN Shi-ying. Research on prototype hydro-turbine operation[M]. Beijing, China: Foreign Language Press, 2012, 53–56.

    Google Scholar 

  116. ARPE J., NICOLET C. and AVELLAN F. Experimental evidence of hydroacoustic pressure waves in a Francis turbine elbow draft tube for low discharge conditions[J]. Journal of Fluids Engineering, 2009, 131(8): 081102.

    Article  Google Scholar 

  117. MÜLLER A., DREYER M. and ANDREINI N. et al. Draft tube discharge fluctuation during self-sustained pressure surge: Fluorescent particle image velocimetry in two-phase flow[J]. Experiments in Fluids, 2013, 54(4): 1–11.

    Article  Google Scholar 

  118. RHEINGANS W. J. Power swing in hydroelectric power plants[J]. Transaction of Asme, 1940, 62(3): 171–184.

    Google Scholar 

  119. ALLIGNE S., NICOLET C. and TSUJIMOTO Y. et al. Cavitation surge modeling in Francis turbine draft tube[J]. Journal of Hydraulic Research, 2014, 52(3): 399–411.

    Article  Google Scholar 

  120. JACOB T., PRÉNAT J. E. and VULLIOUD G. et al. Surging of 140 Mw Francis turbines at high load, analysis and solution[C]. 16th Iahr Symposium on Hydraulic Machinery and Cavitation: Progress in Technology. Sao Paulo, Brazil, 1992.

    Google Scholar 

  121. KOUTNIK J., NICOLET C. A. and SCHOUL G. et al. Overload surge event in a pumped storage power plant[C]. 23rd Iahr Symposium on Hydraulic Machinery and Systems. Yokohama, Japan, 2006.

    Google Scholar 

  122. SUSAN-RESIGA R., CIOCAN G. D. and ANTON I. et al. Analysis of the swirling flow downstream a Francis turbine runner[J]. Journal of Fluids Engineering, 2006, 128(1): 177–189.

    Article  Google Scholar 

  123. SUSAN-RESIGA R. F., MUNTEAN S. and AVELLAN F. et al. Mathematical modelling of swirling flow in hydraulic turbines for the full operating range[J]. Applied Mathematical Modeling, 2011, 35(10): 4759–4773.

    Article  Google Scholar 

  124. ILIESCU M., CIOCAN G. D. and AVELLAN F. Analysis of the cavitating draft tube vortex in a Francis turbine using particle image velocimetry measurements in two-phase flow[J]. Journal of Fluids Engineering, 2008, 130(2): 021105.

    Article  Google Scholar 

  125. GOUIN P., DESCHENES C. and ILIESCU M. et al. Experimental investigation of draft tube flow of an axial turbine by laser Doppler velocimetry[C]. 3rd Iahr International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems. Brno, Czech, 2009.

    Google Scholar 

  126. VUILLEMARD J., AESCHLIMANN V. and FRASER R. et al. Experimental investigation of the draft tube inlet flow of a bulb turbine[J]. Iop Conference Series: Earth and Environmental Science, 2014, 22(3): 032010.

    Article  Google Scholar 

  127. WANG X., NISHI M. and OKAMOTO M. et al. Time-averaged flow pattern of swirl flow and pressure recovery in a elbow draft tube[J]. Transaction of the Japan Society of Mechanical Engineers, Ser. B, 1994, 60: 796–801.

    Article  Google Scholar 

  128. CIOCAN G. D., VU T. C. and AVELLAN F. et al. Experimental study and numerical simulation of the Flindt draft tube rotating vortex[J]. Journal of Fluids Engineering, 2007, 129(2): 146–158.

    Article  Google Scholar 

  129. YONEZAWA K., KONISHI D. and MIYAGAWA K. et al. Cavitation surge in a small model test facility simulating a hydraulic power plant[J]. International Journal of Fluid Machinery and Systems, 2012, 5(4): 152–160.

    Article  Google Scholar 

  130. ZUO Zhi-gang, LIU Shu-hong and LIU De-min et al. Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine[J]. Journal of Hydrodynamics, 2015, 27(4): 513–521.

    Article  MathSciNet  Google Scholar 

  131. ARN C., DUPONT P. and AVELLAN F. Hydraulic machinery and cavitation. Efficiency alteration of francis turbines by travelling bubble cavitation experimental and theoretical study [M]. Dordrecht, The Netherlands: Springer, 1996, 524–533.

    Google Scholar 

  132. LEE S. J. LEE J. H. and SUH J. C. Numerical investigation on vortex shedding from a hydrofoil with a beveled trailing edge[J]. Modeling and Simulation in Engineering, 2015, 2015: Article Id 565417.

    Google Scholar 

  133. DÖRFLER P., SICK M. and COUTU A. Flow-induced pulsation and vibration in hydroelectric machinery [M]. London, UK: Springer-Verlag, 2013.

    Book  Google Scholar 

  134. MOTYCAK L., SKOTAK A. and KUPCIK R. Kaplan turbine tip vortex cavitation-analysis and prevention[J]. Iop Conference Series: Earth and Environmental Science, 2012, 15(3): 032060.

    Article  Google Scholar 

  135. DÖRFLER P. K. Observation of pressure pulsations on a Francis model turbine with high specific speed[J]. The International Journal on Hydropower and Dams, 1994, 1(1): 21–26.

    Google Scholar 

  136. DÖRFLER P. K. Francis turbine surge prediction and prevention[C]. Proceedings Waterpower of ASCE. Washington, USA, 1985, 952–961.

    Google Scholar 

  137. VU T., DEVALS C. and ZHANG Y. et al. Steady and unsteady flow computation in an elbow draft tube with experimental validation[J]. International Journal of Fluid Machinery and Systems, 2011, 4(1): 85–96.

    Article  Google Scholar 

  138. WU Y., LIU J. and SUN Y. et al. Numerical analysis of flow in a Francis turbine on an equal critical cavitation coefficient line[J]. Journal of Mechanical Science and Technology, 2013, 27(6): 1635–1641.

    Article  Google Scholar 

  139. ZHOU Lin-jiu, WANG Zheng-wei. Pressure fluctuations in a Francis turbine draft tube calculated by cavitating flow simulation[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(6): 972–976(in Chinese).

    Google Scholar 

  140. COELHO J. G., BRASIL JUNIOR A. C. P. Numerical simulation of draft tube flow of a bulb turbine[J]. International Journal of Energy and Environment, 2013, 4(4): 539–548.

    Google Scholar 

  141. TANASE N. O., BUNEA F. and CIOCAN G. D. Numerical simulation of the flow in the draft tube of the Kaplan turbine[J]. Upb Science Bulletin, Series D, 2012, 74(1): 83–90.

    Google Scholar 

  142. JI Bin, LUO Xian-wu and NISHI M. et al. Characteristic analysis of two stage rotor-stator interaction and pressure fluctuation propagation under partial load in Francis turbine[J]. Journal of Hydroelectric Engineering, 2014, 33(1): 191–196(in Chinese).

    Google Scholar 

  143. YANG J., ZHOU L. and WANG Z. The numerical simulation of draft tube cavitation in Francis turbine at off-design conditions[J]. Engineering Computations, 2016, 33(1): 139–155.

    Article  Google Scholar 

  144. SUSAN-RESIGA R., MUNTEAN S. and STEIN P. et al. Axisymmetric swirling flow simulation of the draft tube vortex in Francis turbines at partial discharge[J]. International Journal of Fluid Machinery and Systems, 2009, 2(4): 295–302.

    Article  Google Scholar 

  145. FOROUTAN H., YAVUZKURT S. An axisymmetric model for draft tube flow at partial load[J]. Journal of Hydrodynamics, 2016, 28(2): 195–205.

    Article  Google Scholar 

  146. CHEN C, NICOLET C. and YONEZAWA K. et al. One-dimensional analysis of full load draft tube surge[J]. Journal of Fluids Engineering, 2008, 130(4): 041106.

    Article  Google Scholar 

  147. CHEN C, NICOLET C. and YONEZAWA K. et al. One-dimensional analysis of full load draft tube surge considering the finite sound velocity in the penstock[J]. International Journal of Fluid Machinery and Systems, 2009, 2(3): 260–268.

    Article  Google Scholar 

  148. NAKAMURA T., NISHIZAWA H. and YASUDA M. et al. Study on high speed and high head reversible pump-turbine[C]. 18th Iahr Symposium on Hydraulic Machinery and Cavitation. Valencia, Spain, 1996, 210–219.

    Chapter  Google Scholar 

  149. ENOMOTO Y., KUROSAWA S. and KAWAJIRI H. Design optimization of a high specific speed Francis turbine runner[J]. Iop Conference Series: Earth and Enviro- nmental Science, 2012, 15(3): 032010.

    Article  Google Scholar 

  150. NAKAMURA K., KUROSAWA S. Design optimization of a high specific speed Francis turbine using multi-objective genetic algorithm[J]. International Journal of Fluid Machinery and Systems, 2009, 2(2): 102–109.

    Article  Google Scholar 

  151. QIAN Z. D., LI W. and HUAI W. X. et al. The effect of the runner cone design on pressure oscillation characteristics in a Francis hydraulic turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(1): 137–150.

    Article  Google Scholar 

  152. NISHI M., YOSHIDA K. and FUJII M. et al. A study on hybrid control of draft tube surge[C]. 21st Iahr Symposium on Hydraulic Machinery and Systems. Lausanne, Switzerland, 2002.

    Google Scholar 

  153. YU A., LUO X. and JI B. Studies of the effect of vortex-control grooves on pressure oscillations in a Francis turbine draft tube[C]. Asme-Jsme-Ksme Joint Fluids Engineering Conference. Seoul, Korea, 2015, 2015–02539.

    Google Scholar 

  154. HUANG R., YU A. and LUO X. et al. Numerical simulation of pressure vibrations in a Francis turbine draft tube with air admission[C]. 4th Joint Us-European Fluids Engineering Division Summer Meeting. Chicago, USA, 2014, Fedsm 2014–21444.

    Google Scholar 

  155. YU A., LUO X. W. and JI B. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission[J]. Iop Conference Series: Materials Science and Engineering, 2015, 72(4): 042047.

    Article  Google Scholar 

  156. SUSAN-RESIGA R., VU T. C. and MUNTEAN S. et al. Jet control of the draft tube vortex rope in Francis turbines at partial discharge[C]. 23rd Iahr Symposium on Hydraulic Machinery and Systems. Yokohama, Japan, 2006, F192.

    Google Scholar 

  157. SUSAN-RESIGA R., MUNTEAN S. and HASMATU-CHI V. et al. Analysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbi-ne[J]. Journal of Fluids Engineering, 2010, 132(5): 051102.

    Google Scholar 

  158. FOROUTAN H., YAVUZKURT S. Flow in the simplified draft tube of a Francis turbine operating at partial load-Part I: Simulation of the vortex rope[J]. Journal of Applied Mechanics, 2014, 81(6): 061010.

    Google Scholar 

  159. FOROUTAN H., YAVUZKURT S. Flow in the simplified draft tube of a Francis turbine operating at partial load-Part II: Control of the vortex rope[J]. Journal of Applied Mechanics, 2014, 81(6): 061011.

    Article  Google Scholar 

  160. ZHANG R., MAO F. and WU J. et al. Characteristics and control of the draft-tube flow in part-load Francis turbine[J]. Journal of Fluids Engineering, 2009, 131(2): 021101.

    Article  Google Scholar 

  161. SENOCAK I., SHYY W. A Pressure-based method for turbulent cavitating flow computations[J]. Journal of Computational Physics, 2002,176: 363–383.

    Article  MATH  Google Scholar 

  162. JI B., LUO X. and ARNDT R. E. A. et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction[J]. Ocean Engineering, 2014, 87: 64–77.

    Article  Google Scholar 

  163. PENG X. X., JI B. and CAO Y. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydro-foils[J]. International Journal of Multiphase Flow, 2016, 79: 10–22.

    Article  Google Scholar 

  164. WU Q., HUANG B. and WANG G. et al. Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow[J]. International Journal of Multiphase Flow, 2015, 74: 19–33.

    Article  Google Scholar 

  165. HUANG B., YOUNG Y. L. and WANG G. et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2013, 135(7): 071301.

    Article  Google Scholar 

  166. HUANG B., ZHAO Y. and WANG G. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows[J]. Computers and Fluids, 2014, 92: 113–24.

    Article  Google Scholar 

  167. GAVAISES M., VILLA F. and KOUKOUVINIS P. et al. Visualisation and les simulation of cavitation cloud formation and collapse in an axisymmetric geometry[J]. International Journal of Multiphase Flow, 2015, 68: 14–26.

    Article  Google Scholar 

  168. ÖRLEY F., TRUMMLER T. and HICKEL S. et al. Large-eddy simulation of cavitating nozzle flow and primary jet break-up[J]. Physics of Fluids, 2015; 27(8): 086101.

    Article  Google Scholar 

  169. GNANASKANDAN A., MAHESH K. Large eddy simulation of the transition from sheet to cloud cavitation over a wedge[J]. International Journal of Multiphase Flow, 2016, 83: 86–102.

    Article  MathSciNet  Google Scholar 

  170. NG S. L., BRENNEN C. Experiments on the dynamic behvior of cavitating pumps[J]. Journal of Fluids Engineering, 1978, 100(6): 166–176.

    Article  Google Scholar 

  171. ASAKURA E., HASEKAWA Y. and KIKUYAMA K. et al. Study on exit flow of a centrifugal pump impeller in cavitating condition[J]. Transaction of the Japan Society of Mechanical Engineers, Ser. B, 2000, 66: 1765–1771

    Article  Google Scholar 

  172. MAURICE G., DJERIDI H. and BARRE S. Experimental investigation of a cavitating backward-facing step flow[J]. Iop Conference Series: Earth and Environmental Science, 2014, 22(5): 052008.

    Article  Google Scholar 

  173. NOBES D. S., FORD H. D. and TATAM R. P. Instantaneous, three-component planar Doppler velocimetry using imaging fibre bundles[J]. Experiments in Fluids, 2004, 36(1): 3–10.

    Article  Google Scholar 

  174. ZHANG Y., ZHANG Y. and WU Y. A review of rotating stall in reversible pump turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, Doi: 10.1177/0954406216640579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-wu Luo  (罗先武).

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 51536008), the Beijing Key Laboratory Development Project (Grant No. Z151100001615006).

Biography: Xian-wu LUO (1967-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Xw., Ji, B. & Tsujimoto, Y. A review of cavitation in hydraulic machinery. J Hydrodyn 28, 335–358 (2016). https://doi.org/10.1016/S1001-6058(16)60638-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60638-8

Key words

Navigation