Skip to main content
Log in

Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, the turbulent attached cavitating flow around a Clark-Y hydrofoil is investigated by the large eddy simulation (LES) method coupled with a homogeneous cavitation model. The predicted lift coefficient and the cavity volume show a distinctly quasi-periodic process with cavitation shedding and the results agree fairly well with the available experimental data. The present simulation accurately captures the main features of the unsteady cavitation transient behavior including the attached cavity growth, the sheet/cloud cavitation transition and the cloud cavitation collapse. The vortex shedding structure from a hydrofoil cavitating wake is identified by the Q-criterion, which implies that the large scale structures might slide and roll down along the suction side of the hydrofoil while being further developed at the downstream. Further analysis demonstrates that the turbulence level of the flow is clearly related to the cavitation and the turbulence velocity fluctuation is much influenced by the cavity shedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28(3): 335–358.

    Article  Google Scholar 

  2. Huang B., Zhao Y., Wang G. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flow [J]. Computers and Fluids, 2014, 92(3): 113–124.

    Article  Google Scholar 

  3. Wang G., Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil [J]. Applied Mathematical Modelling, 2007, 31(3): 417–447.

    Article  Google Scholar 

  4. Dai S., Younis B. A., Sun L. Large-eddy simulations of cavitation in a square surface cavity [J]. Applied Mathematical Modelling, 2014, 38(23): 5665–5683.

    Article  MathSciNet  Google Scholar 

  5. Li L., Li B., Hu Z. et al. Large eddy simulation of unsteady shedding behavior in cavitating flows with time-average validation [J]. Ocean Engineering, 2016, 125: 1–11.

    Article  Google Scholar 

  6. Passandideh-Fard M., Roohi E. Coalescence collision of two droplets: bubble entrapment and the effects of important parameters [C]. 14th Annual (International) Mechanical Engineering Conference. Isfahan, Iran, 2006.

    Google Scholar 

  7. Roohi E., Zahiri A. P., Passandideh-Fard M. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model [J]. Applied Mathematical Modelling, 2013, 37(9): 6469–6488.

    Article  MathSciNet  Google Scholar 

  8. Gnanaskandan A., Mahesh K. Large eddy simulation of the transition from sheet to cloud cavitation over a wedge [J]. International Journal of Multiphase Flow, 2016, 83: 86–102.

    Article  MathSciNet  Google Scholar 

  9. Le Q., Franc J. P., Michel J. M. Partial cavities: Global behavior and mean pressure distribution [J]. Journal of Fluids Engineering, 1993, 115(2): 243–248.

    Article  Google Scholar 

  10. Pham T. M., Larrarte F., Fruman D. H. Investigation of unsteady sheet cavitation and cloud cavitation mechanisms [J]. Journal of Ffluids Engineering, 1999, 121(2): 289–296.

    Article  Google Scholar 

  11. Zhang L. X., Khoo B. C. Computations of partial and super cavitating flows using implicit pressure-based algorithm (IPA) [J]. Computers and Fluids, 2013, 73: 1–9.

    Article  MathSciNet  Google Scholar 

  12. Pendar M. R., Roohi E. Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models [J]. Ocean Engineering, 2016, 112: 287–306.

    Article  Google Scholar 

  13. Ji B., Luo X. W., Peng X. X. et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]. Journal of Hydrodynamics, 2013, 25(4): 510–519.

    Article  Google Scholar 

  14. Park S., Rhee S. H. Numerical analysis of the three-dimensional cloud cavitating flow around a twisted hydrofoil [J]. Fluid Dynamics Research, 2012, 45(1): 015502.

    Article  MathSciNet  Google Scholar 

  15. Sedlar M., Ji B., Kratky T. et al. Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil [J]. Ocean Engineering, 2016, 123: 357–382.

    Article  Google Scholar 

  16. Gopalan S., Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of Fluids, 2000, 12(4): 895–911.

    Article  Google Scholar 

  17. Smagorinsky J. General circulation experiments with the primitive equations: I. The basic experiment [J]. Monthly Weather Review, 1963, 91(3): 99–164.

    Article  Google Scholar 

  18. Moin P. Advances in large eddy simulation methodology for complex flows [J]. International Journal of Heat and Fluid Flow, 2002, 23(5): 710–720.

    Article  Google Scholar 

  19. Piomelli U. Large-eddy simulation: Achievements and challenges [J]. Progress in Aerospace Sciences, 1999, 35(4): 335–362.

    Article  Google Scholar 

  20. Luo X. W., Ji B., Peng X. X. et al. Numerical simulation of cavity shedding from a three-dimensional twisted hy-drofoil and induced pressure fluctuation by large-eddy simulation [J]. Journal of Fluids Engineering, 2012, 134(4): 379–389.

    Article  Google Scholar 

  21. Ji B., Luo X. W., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]. International Journal of Multiphase Flow, 2015, 68: 121–134.

    Article  MathSciNet  Google Scholar 

  22. Dreyer M., Decaix J., Münch-Alligné C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J]. Experiments in Fluids, 2014, 55(11): 1–13.

    Article  Google Scholar 

  23. Peng X. X., Ji B., Cao Y. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J]. International Journal of Multiphase Flow, 2016, 79: 10–22.

    Article  Google Scholar 

  24. Hunt J. C. R., Wray A. A., Moin P. Eddies, streams, convergence zones in turbulent flows [C]. Proceedings of the Summer Program 1988 in its Studying Turbulence Using Numerical Simulation Databases. California, USA, 1988, 2: 193–208.

    Google Scholar 

  25. Kravtsova A. Y., Markovich D. M., Pervunin K. S. et al. High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil [J]. International Journal of Multiphase Flow, 2014, 60: 119–134.

    Article  Google Scholar 

  26. Yu X., Huang C., Du T. et al. Study of characteristics of cloud cavity around axisymmetric projectile by large eddy simulation [J]. Journal of Fluids Engineering, 2014, 136(5): 051303.

    Article  Google Scholar 

  27. Roohi E., Pendar M. R., Rahimi A. Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models [J]. Applied Mathematical Modelling, 2016, 40(1): 542–564.

    Article  MathSciNet  Google Scholar 

  28. Wang Y., Wu X., Huang C. et al. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J]. International Journal of Multiphase Flow, 2016, 85: 48–56.

    Article  Google Scholar 

  29. Park S., Rhee S. H. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics [J]. Journal of Mechanical Science and Technology, 2015, 29(8): 3287–3296.

    Article  Google Scholar 

  30. Chen G., Wang G., Hu C. et al. Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent-divergent channel [J]. International Journal of Multiphase Flow, 2015, 72: 133–140.

    Article  Google Scholar 

  31. Ji B., Luo X., Wu Y. et al. Numerical investigation of three-dimensional cavitation evolution and excited pressure fluctuations around a twisted hydrofoil [J]. Journal of Mechanical Science and Technology, 2014, 28(7): 2659–2668.

    Article  Google Scholar 

  32. Huang B., Young Y. L., Wang G. et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J]. Journal of Fluids Engineering, 2013, 135(7): 071301.

    Article  Google Scholar 

  33. Iyer C. O., Ceccio S. L. The influence of developed cavitation on the flow of a turbulent shear layer [J]. Physics of Fluids, 2002, 14(10): 3414–3431.

    Article  Google Scholar 

  34. Dittakavi N., Chunekar A., Frankel S. Large eddy simulation of turbulent-cavitation interactions in a Venturi nozzle [J]. Journal of Fluids Engineering, 2010, 132(12): 121301.

    Article  Google Scholar 

  35. Decaix J., Goncalvès E. Investigation of three-dimensional effects on a cavitating Venturi flow [J]. International Journal of Heat and Fluid Flow, 2013, 44: 576–595.

    Article  Google Scholar 

  36. Schnerr G. H., Sauer J. Physical and numerical modeling of unsteady cavitation dynamics[C]. Fourth International Conference on Multiphase Flow. New Orleans, USA, 2001.

    MATH  Google Scholar 

  37. Nicoud F., Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor [J]. Flow Turbulence and Combustion, 1999, 62(3):183–200.

    Article  Google Scholar 

  38. Sagaut P., Lee Y. T. Large eddy simulation for incompressible Flows: An introduction. scientific computation series [J]. Applied Mechanics Reviews, 2002, 55(6): 1745–1746.

    Article  Google Scholar 

  39. Barth T. J., Jespersen D. C. The design and application of upwind schemes on unstructured meshes [C]. 27th Aerospace Sciences Meeting, Reno, NV, USA, 1989.

    Google Scholar 

  40. Wang G., Senocak I., Shyy W. et al. Dynamics of attached turbulent cavitating flow [J]. Progress in Aerospace Sciences, 2001, 37(6): 551–581.

    Article  Google Scholar 

  41. Huang B. Physical and numerical investigation of unsteady cavitating flows [D]. Doctoral Thesis, Beijing, China: Beijing Institute of Technology, 2012 (in Chinese).

    Google Scholar 

  42. Laberteaux K. R., Ceccio S. L. Partial cavity flows. Part 1. Cavities forming on models without spanwise variation [J]. Journal of Fluid Mechanics, 2001, 431: 1–41.

    Article  Google Scholar 

  43. ITTC QM Procedure. Uncertainty analysis in CFD verification and validation methodology and procedures [R]. 7.5-03-01-01, 2002.

    Google Scholar 

  44. ITTC QM Procedure. Uncertainty analysis in CFD, examples for resistance and flow [R]. 7.5-03-02-01, 2002.

    Google Scholar 

  45. Xing T. A general framework for verification and validation of large eddy simulations [J]. Journal of Hydrodynamics, 2015, 27(2): 163–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-ping Long  (龙新平).

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51576143, 11472197).

iography: Bin Ji (1982-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, B., Long, Y., Long, Xp. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions. J Hydrodyn 29, 27–39 (2017). https://doi.org/10.1016/S1001-6058(16)60715-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60715-1

Key words

Navigation