Skip to main content
Log in

Verification and validation of Urans simulations of the turbulent cavitating flow around the hydrofoil

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the verification and validation (V&V) procedures for the Urans simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model (DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety (FS1), the Factor of Safety (FS) and the Grid Convergence Index (GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28(3): 335–358.

    Article  Google Scholar 

  2. Gopalan S., Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of Fluids, 2000, 12(4): 895–911.

    Article  Google Scholar 

  3. Park S., Rhee S. H. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics [J]. Journal of Mechanical Science and Technology, 2015, 29(8): 3287–3296.

    Article  Google Scholar 

  4. Kravtsova A. Y., Markovich D. M., Pervunin K. S. et al. High-speed visualization and Piv measurements of cavitating flows around a semi-circular leading-edge flat plate and Naca0015 hydrofoil [J]. International Journal of Multiphase Flow, 2014, 60(3): 119–134.

    Article  Google Scholar 

  5. Pham T. M., Larrarte F., Fruman D. H. Investigation of unsteady sheet cavitation and cloud cavitation mechanisms [J]. Journal of Fluids Engineering, 1999, 121(2): 289–296.

    Article  Google Scholar 

  6. Ji B., Luo X. W., Peng X. X. et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]. Journal of Hydrodynamics, 2013, 25(4):510–519.

    Article  Google Scholar 

  7. Wang G., Senocak I., Shyy W. et al. Dynamics of attached turbulent cavitating flows [J]. Progress in Aerospace Sciences, 2001, 37(6): 551–581.

    Article  Google Scholar 

  8. Arndt R. E. A. Cavitation in fluid machinery and hydraulic structures [J]. Annual Review of Fluid Mechanics, 1981, 13(1): 273–326.

    Article  Google Scholar 

  9. Wang Y. W., Wu X. C., Huang C. G. et al. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J]. International Journal of Multiphase Flow, 2016, 85(8): 48–56.

    Article  Google Scholar 

  10. Dreyer M., Decaix J., Münch-Alligné C. et al. Mind the gap: a new insight into the tip leakage vortex using stereo-PIV [J]. Experiments in Fluids, 2014, 55(11): 1–13.

    Article  Google Scholar 

  11. Ji B., Luo X. W., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]. International Journal of Multiphase Flow, 2015, 68(1): 121–134.

    Article  MathSciNet  Google Scholar 

  12. Peng X. X., Ji B., Cao Y. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J]. International Journal of Multiphase Flow, 2016, 79(2): 10–22.

    Article  Google Scholar 

  13. Pendar M. R., Roohi E. Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models [J]. Ocean Engineering, 2016, 112: 287–306.

    Article  Google Scholar 

  14. Decaix J., Goncalvès E. Investigation of three-dimensional effects on a cavitating Venturi flow [J]. International Journal of Heat and Fluid Flow, 2013, 44(4): 576–595.

    Article  Google Scholar 

  15. Cheng H. Y., Long X. P., Ji B. et al. Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint [J]. Journal of Hydrodynamics, 2016, 28(4): 709–712.

    Article  Google Scholar 

  16. Huang B., Young Y. L., Wang G. et al. Combined experi-mental and computational investigation of unsteady structure of sheet/cloud cavitation [J]. Journal of Fluids Engineering, 2013, 135(7): 071301.

    Article  Google Scholar 

  17. Yu X. X., Huang C. G., Du T. Z. et al. Study of charac-teristics of cloud cavity around axisymmetric projectile by large eddy simulation [J]. Journal of Fluids Engineering, 2014, 136(5): 051303.

    Article  Google Scholar 

  18. Ji B., Long Y., Long X. P. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J]. Journal of Hydrodyna-mics, 2017, 29(1): 27–39.

    Article  Google Scholar 

  19. Roohi E., Zahiri A. P., Passandideh-Fard M. Numerical simulation of cavitation around a two-dimensional hydrofoil using Vof method and Les turbulence model [J]. Applied Mathematical Modelling, 2013, 37(9): 6469–6488.

    Article  MathSciNet  Google Scholar 

  20. Luo X. W., Ji B., Peng X. X. et al. Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation [J]. Journal of Fluids Engineering, 2012, 134(4): 379–389.

    Article  Google Scholar 

  21. Roache P. J. Verification and validation in computational science and engineering [M]. Albuquerque, NM, USA: Hermosa, 1998.

    Google Scholar 

  22. Oberkampf W. L., Roy C. J. Verification and validation in scientific computing [M]. Cambridge, UK: Cambridge University Press, 2010.

    Book  Google Scholar 

  23. Logan R. W., Nitta C. K. Comparing 10 methods for solu-tion verification, and linking to model validation [J]. Journal of Aerospace Computing, Information, and Communication, 2006, 3(7): 354–373.

    Article  Google Scholar 

  24. Roache P. J. Discussion: “Factors of Safety for Richardson Extrapolation” (Xing, T., and Stern, F., 2010, Asme J. Fluids Eng., 132, p. 061403) [J]. Journal of Fluids Engineering, 2011, 133(11): 115501.

    Article  Google Scholar 

  25. Phillips T. S., Roy C. J. Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics [J]. Journal of Fluids Engineering, 2014, 136(12): 121401.

    Article  Google Scholar 

  26. Stern F., Wilson R. V., Coleman H. W. et al. Comprehensive approach to verification and validation of Cfd Simulations–Part I: Methodology and procedures [J]. Journal of Fluids Engineering, 2001, 123(4): 792.

    Article  Google Scholar 

  27. Wilson R., Shao J., Stern F. Discussion: criticisms of the “correction factor” verification method 1[J]. Journal of Fluids Engineering, 2004, 126(4):704–706.

    Google Scholar 

  28. Xing T., Stern F. Factors of safety for Richardson extrapolation [J]. Journal of Fluids Engineering, 2010, 132(6): 061403.

    Article  Google Scholar 

  29. Stern F., Yang J., Wang Z. et al. Computational ship hydrodynamics: nowadays and way forward [J]. International Shipbuilding Progress, 2013, 60(1–4): 3–105.

    Google Scholar 

  30. Xing T., Stern F. Closure to “discussion of ‘factors of safety for Richardson Extrapolation’” (2011, Asme J. Fluids Eng., 133, p. 115501) [J]. Journal of Fluids Engineering, 2011, 133(11): 115502.

    Article  Google Scholar 

  31. Klein M. An attempt to assess the quality of large eddy simulations in the context of implicit filtering [J]. Flow, Turbulence and Combustion, 2005, 75(1–4): 131–147.

    Article  Google Scholar 

  32. Freitag M., Klein M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering [J]. Journal of Turbulence, 2006, 7: 1–11.

    Article  Google Scholar 

  33. Xing T. A general framework for verification and validation of large eddy simulations [J]. Journal of Hydrodynamics, 2015, 27(2): 163–175.

    Article  Google Scholar 

  34. Huang B., Wang G., Zhao Y. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model [J]. Journal of Hydrodynamics, 2014, 26(1): 26–36.

    Article  Google Scholar 

  35. Coutier-Delgosha O., Fortes-Patella R., Reboud J. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation [J]. Journal of Fluids Engineering, 2003, 125(1): 38–45.

    Article  Google Scholar 

  36. Ji B., Luo X., Arndt R. E. A. et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction [J]. Ocean Engineering, 2014, 87: 64–77.

    Article  Google Scholar 

  37. Chen G., Wang G., Hu C. et al. Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel [J]. International Journal of Multiphase Flow, 2015, 72(5): 133–140.

    Article  Google Scholar 

  38. Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan. 2004.

    Google Scholar 

  39. Stern F., Wilson R., Shao J. Quantitative V&V of CFD simulations and certification of Cfd codes [J]. International Journal for Numerical Methods in Fluids, 2010, 50(11): 1335–1355.

    Article  Google Scholar 

  40. De Luca F., Mancini S., Miranda S. et al. An Extended verification and validation study of CFD simulations for planing hulls [J]. Journal of Ship Research, 2016, 60(2): 101–118.

    Article  Google Scholar 

  41. Eça L., Hoekstra M. Code verification of unsteady flow solvers with method of manufactured solutions [J]. International Journal of Offshore and Polar Engineering, 2008, 18(2): 120–126.

    Google Scholar 

  42. Dutta R., Xing T. Quantitative solution verification of large eddy simulation of channel flow [C]. Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer. Las Vegas, USA, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ji  (季斌).

Additional information

Project supported by the National Natural Science Foundation of China (Project Nos. 51576143, 11472197).

Biography: Yun Long (1993-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Long, Xp., Ji, B. et al. Verification and validation of Urans simulations of the turbulent cavitating flow around the hydrofoil. J Hydrodyn 29, 610–620 (2017). https://doi.org/10.1016/S1001-6058(16)60774-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60774-6

Keywords

Navigation