Skip to main content
Log in

Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Natural fibres are very versatile materials, their properties vary with chemical composition and physical structure. The effects of alkali, silane and combined alkali and silane treatments on the mechanical (tensile), morphological, and structural properties of Pine Apple Leave Fibres (PALF) and Kenaf Fibres (KF) were investigated with the aim to improve their compatibility with polymer matrices. The effectiveness of the alkali and saline treatments in the removal of impurities from the fibre surfaces was confirmed by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectrometry (FTIR) observation. The morphological study of treated PALF and KF by SEM indicates that silane treated fibres have less impurities and lignin and hemicelluloses removed than those by other chemical treatments. Silane treated PALF and KF display better tensile strength than those of untreated, alkaline and NaOH-silane treated. Droplet test indicates that the Interfacial Stress Strength (IFSS) of alkali and silane treated PALF and KF are enhanced whereas silane treated fibres display highest IFSS. It is assumed that fibre treatments will help to develop high performance KF and PALF reinforced polymer composites for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashori A. Nonwood fibers—A potential source of raw material in papermaking. Polymer-Plastics Technology and Engineering, 2006, 45, 1133–1136.

    Article  Google Scholar 

  2. Saba N, Tahir P M, Jawaid M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers, 2014, 6, 2247–2273.

    Article  Google Scholar 

  3. Thakur V K, Singha A S, Mehta I K. Renewable resource-based green polymer composites: Analysis and characterization. International Journal of Polymer Analysis and Characterization, 2010, 15, 137–146.

    Article  Google Scholar 

  4. Petchwattana N, Covavisaruch S. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly (lactic acid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionic Engineering, 2014, 11, 630–637.

    Article  Google Scholar 

  5. Sedan D, Pagnoux C, Smith A, Chotard T. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. Journal of the European Ceramic Society, 2008, 28, 183–192.

    Article  Google Scholar 

  6. Li X, Tabil L G, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 2007, 15, 25–33.

    Article  Google Scholar 

  7. Rachini A, Le Troedec M, Peyratout C, Smith A. Chemical modification of hemp fibers by silane coupling agents. Journal of Applied Polymer Science, 2012, 123, 601–610.

    Article  Google Scholar 

  8. Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak M R, Hoque M E. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science, 2015, 2015, 950567.

  9. Aji I, Sapuan S, Zainudin E, Abdan K. Kenaf fibres as reinforcement for polymeric composites: A review. International Journal of Mechanical and Materials Engineering, 2009, 4, 239–248.

    Google Scholar 

  10. Khalil H P S A, Yusra A F I, Bhat A H, Jawaid M. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 2010, 31, 113–121.

    Article  Google Scholar 

  11. Asumani O M L, Reid R G, Paskaramoorthy R. The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1431–1440.

    Article  Google Scholar 

  12. Bernard M, Khalina A, Ali A, Janius R, Faizal M, Hasnah K, Sanuddin A. The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite. Materials & Design, 2011, 32, 1039–1043.

    Article  Google Scholar 

  13. Essabir H, Achaby M E, Hilali E M, Bouhfid R, Qaiss A. Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated Argan nut shell particles. Journal of Bionic Engineering, 2015, 12, 129–141.

    Article  Google Scholar 

  14. Terpakova E, Kidalova L, Eštoková A, Čigášová J, Števulová N. Chemical modification of hemp shives and their characterization. Procedia Engineering, 2012, 42, 931–941.

    Article  Google Scholar 

  15. Meon M S, Othman M F, Husain H, Remeli M F, Syawal M S M. Improving tensile properties of kenaf fibers treated with sodium hydroxide. Procedia Engineering, 2012, 41, 1587–1592.

    Article  Google Scholar 

  16. Puglia D, Monti M, Santulli C, Sarasini F, De Rosa I M, Kenny J M. Effect of alkali and silane treatments on mechanical and thermal behavior of Phormium tenax fibers. Fibers and Polymers, 2013, 14, 423–427.

    Article  Google Scholar 

  17. Sgriccia N, Hawley M C, Misra M. Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1632–1637.

    Article  Google Scholar 

  18. Huo S, Thapa A, Ulven C. Effect of surface treatments on interfacial properties of flax fiber-reinforced composites. Advanced Composite Materials, 2013, 22, 109–121.

    Article  Google Scholar 

  19. Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B. Performance of pineapple leaf fiber–natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science, 2006, 102, 1974–1984.

    Article  Google Scholar 

  20. Edeerozey A M, Akil H M, Azhar A, Ariffin M Z. Chemical modification of kenaf fibers. Materials Letters, 2007, 61, 2023–2025.

    Article  Google Scholar 

  21. Threepopnatkul P, Kaerkitcha N, Athipongarporn N. Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Composites Part B: Engineering, 2009, 40, 628–632.

    Article  Google Scholar 

  22. Kabir M, Wang H, Lau K, Cardona F. Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering, 2013, 53, 362–368.

    Article  Google Scholar 

  23. Mukhopadhyay S, Fangueiro R, Arpac Y, Şentürk Ü. Banana fibers–variability and fracture behaviour. Cellulose, 2008, 31, 39–45.

    Google Scholar 

  24. Ishak M R, Sapuan S M, Leman Z, Rahman M Z A, Anwar U M K. Characterization of sugar palm (Arenga pinnata) fibres. Journal of Thermal Analysis and Calorimetry, 2011, 109, 981–989.

    Article  Google Scholar 

  25. Sawpan M A, Pickering K L, Fernyhough A. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1189–1196.

    Article  Google Scholar 

  26. Ray D, Sarkar B. Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science, 2001, 80, 1013–1020.

    Article  Google Scholar 

  27. Samal R, Ray M C. Effect of chemical modifications on FTIR spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). Journal of Applied Polymer Science, 1997, 64, 2119–2125.

    Article  Google Scholar 

  28. Stark N M, Matuana L M. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polymer Degradation and Stability, 2004, 86, 1–9.

    Article  Google Scholar 

  29. Mwaikambo L Y, Ansell M P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 2002, 84, 2222–2234.

    Article  Google Scholar 

  30. Huda M S, Drzal L T, Mohanty A K, Misra M. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composite Interfaces, 2008, 15, 169–191.

    Article  Google Scholar 

  31. Razak N I, Ibrahim N A, Zainuddin N, Rayung M, Saad W Z. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites. Molecules, 2014, 19, 2957–2968.

    Article  Google Scholar 

  32. Joonobi M, Harun J, Tahir P M, Zaini L H, SaifulAzry S, Makinejad M D. Characteristic of nanofibers extracted from kenaf core. BioResources, 2010, 5, 2556–2566.

    Google Scholar 

  33. El Mechtali F Z, Essabir H, Nekhlaoui S, Ouadi Bensalah M, Jawaid M, Bouhfid R, Qaiss A. Mechanical and thermal properties of polypropylene reinforced with almond shells particle: Impact of chemical treatments. Journal of Bionic Engineering, 2015, 12, 483–494.

    Article  Google Scholar 

  34. Sun R, Sun X, Fowler P Tomkinson J. Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. European Polymer Journal, 2002, 38, 1399–1407.

    Article  Google Scholar 

  35. Hamdan S, Talib Z A, Rahman M R. Dynamic Youngs modulus measurement of treated and post-treated tropical wood polymer composites (WPC)’. BioResources, 2009, 5, 324–342.

    Google Scholar 

  36. Aziz S H, Ansell M P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1–polyester resin matrix. Composites Science and Technology, 2004, 64, 1219–1230.

    Article  Google Scholar 

  37. Goud G, Rao R. Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bulletin of Materials Science, 2011, 34, 1575–1581.

    Article  Google Scholar 

  38. Hossain M K, Dewan M W, Hosur M, Jeelani S. Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Composites Part B: Engineering, 2011, 42, 1701–1707.

    Article  Google Scholar 

  39. Das M, Chakrabarty D. Thermogravimetric analysis and weathering study by water immersion of alkali treated bamboo fibres. BioResources, 2008, 3, 1051–1062.

    Google Scholar 

  40. Guimarães J L, Frollini E, Da Silva C G, Wypych F, Satyanarayana K. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products, 2009, 30, 407–415.

    Article  Google Scholar 

  41. Sreekala M, Kumaran M, Thomas S. Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 1997, 66, 821–835.

    Article  Google Scholar 

  42. Ibrahim N A, Hadithon K A, Abdan K. Effect of fiber treatment on mechanical properties of kenaf fiber-ecoflex composites. Journal of Reinforced Plastics and Composites, 2010, 29, 2192–2198.

    Article  Google Scholar 

  43. Mishra S, Mohanty A, Drzal L, Misra M, Parija S, Nayak S, Tripathy S. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 2003, 63, 1377–1385.

    Article  Google Scholar 

  44. Nirmal U, Singh N, Hashim J, Lau S T, Jamil N. On the effect of different polymer matrix and fibre treatment on single fibre pullout test using betelnut fibres. Materials & Design, 2011, 32, 2717–2726.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asim, M., Jawaid, M., Abdan, K. et al. Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres. J Bionic Eng 13, 426–435 (2016). https://doi.org/10.1016/S1672-6529(16)60315-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60315-3

Keywords

Navigation