Skip to main content
Log in

Analysis of Bone Remodeling Under Piezoelectricity Effects Using Boundary Elements

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Piezoelectric materials exhibit a response to mechanical-electrical coupling, which represents an important contribution to the electrical-mechanical interaction in bone remodeling process. Therefore, the study of the piezoelectric effect on bone remodeling has high interest in applied biomechanics. The effects of mechano-regulation and electrical stimulation on bone healing are explained. The Boundary Element Method (BEM) is used to simulate piezoelectric effects on bones when shearing forces are applied to collagen fibers to make them slip past each other. The piezoelectric fundamental solutions are obtained by using the Radon transform. The Dual Reciprocity Method (DRM) is used to simulate the particular solutions in time-dependent problems. BEM analysis showed the strong influence of electrical stimulation on bone remodeling. The examples discussed in this work showed that, as expected, the electrically loaded bone surfaces improved the bone deposition. BEM results confirmed previous findings obtained by using the Finite Element Method (FEM). This work opens very promising doors in biomechanics research, showing that mechanical loads can be replaced, in part, by electrical charges that stimulate strengthening bone density. The obtained results herein are in good agreement with those found in literature from experimental testing and/or other simulation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukada E, Yasuda I. On the piezoelectric effect of bone. Journal of the Physical Society of Japan, 1957, 12, 1158–1162.

    Article  Google Scholar 

  2. Fukada E, Yasuda I. Piezoelectric effect in collagen. Japanese Journal of Applied Physics. 1964, 3, 117–121.

    Article  Google Scholar 

  3. Ramtani S. Electromechanics of bone remodelling. International Journal of Engineering Science. 2008, 46, 1173–1182.

    Article  MathSciNet  Google Scholar 

  4. Prendergast P J, Taylor D. Prediction of bone adaptation using damage accumulation. Journal of Biomechanics, 1994, 27, 1067–1076.

    Article  Google Scholar 

  5. Papathanasopoulou V A, Fotiadis D I, Foutsitzi G, Massalas C V. A poroelastic bone model for internal remodeling. International Journal of Engineering Science. 2002, 40, 511–530.

    Article  Google Scholar 

  6. Weinans H, Prendergast P J. Tissue adaptation as a dynamical process far from equilibrium. Bone, 1996, 19, 143–149.

    Article  Google Scholar 

  7. Gong H, Kong L, Zhang R, Fang J, Zhao M. A femur-implant model for the prediction of bone remodeling behavior induced by cementless stem. Journal of Bionic Engineering, 2013, 10, 350–358.

    Article  Google Scholar 

  8. Huiskes R, Weinans H, Grootenboer H J, Dalstra M, Fudala B, Slooff T J. Adaptive bone-remodeling theory applied to prosthetic design analysis. Journal of Biomechanics, 1987, 20, 1135–1150.

    Article  Google Scholar 

  9. Weinans H, Huiskes H, Grootenboer H J. The behavior of adaptive bone remodeling simulation models. Journal of Biomechanics. 1992, 25, 1425–1441.

    Article  Google Scholar 

  10. Jovanovic J D, Jovanovic M L. Biomechanical model of vertebra based on bone remodeling. Facta Universitatis: Medicine and Biology, 2004, 11, 35–39.

    Google Scholar 

  11. Fernández J, García-Aznar J, Martínez R. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modeling. Journal of Theoretical Biology, 2012, 292, 65–81.

    Article  Google Scholar 

  12. Zeman M E, Cerrolaza M. A coupled mechanical-biological computational approach to simulate antiresorptive drug effects on osteoporosis. In: Zeman M E and Cerrolaza M eds., Computational Modeling in Tissue Surgery, WIT Press, Southampton, UK, 2005, 81–100.

    Chapter  Google Scholar 

  13. Martínez G, García J M, Doblaré M, Cerrolaza M. External bone remodeling through boundary element and damage mechanics. Mathematics and Computers in Simulation, 2006, 73, 183–199.

    Article  MathSciNet  Google Scholar 

  14. Cilingir A. Finite element analysis of the contact mechanics of ceramic on ceramic hip resurfacing prostheses. Journal of Bionic Engineering, 2010, 7, 244–253.

    Article  MathSciNet  Google Scholar 

  15. Davidson P L, Milburn P D, Wilson B D. Biological adaptive control model: A mechanical analogue of muti-factorial bone density adaptation. Journal of Theoretical Biology, 2004, 227, 187–195.

    Article  Google Scholar 

  16. Pivonka P, Zimak J, Smith D W, Gardiner B S, Dunstan C R, Sims N A, Martin T J, Mundy G R. Model structure and control of bone remodeling: A theoretical study. Bone. 2008, 43, 249–263.

    Article  Google Scholar 

  17. Martin R B. Theoretical analysis of the piezoelectric effect in bone. Journal of Biomechanics, 1979, 12, 55–63.

    Article  Google Scholar 

  18. MacGinitie I A, Stanley G D, Bieber W A, Wu D D. Bone streaming potentials and currents depend on anatomical structure and loading orientation. Journal of Biomechanics, 1997, 30, 1133–1139.

    Article  Google Scholar 

  19. Jones D, Scholuebbers G, Matthias H H. Wolff’s law, piezo-electricity and mechanical stress responses in the skeleton. Engineering in Medicine and Biology Society, Proceedings of the Annual International Conference of the IEEE, New Orleans, LA, USA, 1988, 2, 994.

    Google Scholar 

  20. Gjelsvik A. Bone remodeling and piezoelectrity-I. Journal of Biomechanics. 1973, 6, 69–77.

    Article  Google Scholar 

  21. Guzelsu N, Demiray H. Electromechanical properties and related models of bone tissues: A review. International Journal of Engineering Science. 1979, 17, 813–851.

    Article  MathSciNet  Google Scholar 

  22. McDonald F, Houston W. An in vivo assessment of muscular activity and the importance of electrical phenomena in bone remodelling. Journal of Anatomy. 1990, 172, 165–175.

    Google Scholar 

  23. Demiray H, Dost S. The effect of quadrupole on bone remodelling. International Journal of Engineering Science, 1996, 3, 257–268.

    Article  Google Scholar 

  24. Qu C, Yu S. The damage and healing of bone in the disuse state under mechanical and electromagnetic loadings. Procedia Engineering, 2011, 10, 171–176.

    Article  Google Scholar 

  25. Qu C Y, Qin Q H, Kang Y L. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads. Biomaterials, 2006, 27, 4050–4057.

    Article  Google Scholar 

  26. Qin Q H. Fracture analysis of cracked thermopiezoelectric materials by BEM Electronic. Journal of Boundary Elements, 2003, 1, 283–301.

    MathSciNet  Google Scholar 

  27. Cowin Stephen C, Weinbaum S, Yu Z. A case for bone canaliculi as the anatomical site of strain generated potentials. Journal of Biomechanics. 1995, 38, 1281–1297.

    Article  Google Scholar 

  28. Qin Q H, Qu C Y, Ye J Q. Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads. Biomaterials, 2005, 26, 6798–6810.

    Article  Google Scholar 

  29. Lian Q, Li D, Jin Z, Wang Z, Sun Y. Patient-specific design and biomechanical evaluation of a novel bipolar femoral hemi-knee prosthesis. Journal of Bionic Engineering, 2014, 11, 259–267.

    Article  Google Scholar 

  30. Schneck Daniel J, Bronzino Joseph D. Biomechanics Principles and Applications, CRC Press, Boca Ratón, Florida, USA, 2003.

    Google Scholar 

  31. Rho J, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 1998, 20, 92–102.

    Article  Google Scholar 

  32. Currey John D. Bones: Structure and Mechanics, 1st ed, Princeton University Press, New Jersey, USA, 2002.

    Google Scholar 

  33. Bruce R, Burr D B, Sharkey N A. Skeletal Tissue Mechanics, Springer, NY, USA, 2004.

    Google Scholar 

  34. Eriksson C. Streaming potentials and other water dependent effects in mineralized tissues. Annuals of the New York Academy of Science, 1974, 238, 321–338.

    Article  Google Scholar 

  35. Becker Robert O, Spadaro Joseph A. Electrical stimulations of partial limb regeneration in mammals. Bulletin of the New York Academy of Medicine, 1972, 48, 627–641.

    Google Scholar 

  36. Marino Andrew A, Becker Robert O. Piezoelectric effect and growth control in bone. Nature, 1970, 228, 473–474.

    Article  Google Scholar 

  37. Marino Andrew A, Becker Robert O. Origin of the piezoelectric effect in bone. Calcified Tissue Research, 1971, 8, 177–180.

    Article  Google Scholar 

  38. Duarte V, Gonzalez Y, Cerrolaza M. Boundary element simulation of bone tissue. International Journal of Biomedical Engineering and Technology, 2011, 5, 211–228.

    Article  Google Scholar 

  39. Reinish G, Nowick A. Piezoelectric properties of bone as functions of moisture content. Nature, 1975, 253, 626–627.

    Article  Google Scholar 

  40. Anderson J, Eriksson C. Piezoelectric properties of dry and wet bone. Nature, 1970, 227, 491–492.

    Article  Google Scholar 

  41. Fotiadis D I, Foutsitzi G, Massalas C V. Wave propagation in human long bones of arbitrary cross section. International Journal of Engineering Science, 2000, 38, 1553–1591.

    Article  Google Scholar 

  42. Ahmed S M, Abd-Alla A M. Electromechanical wave propagation in a cylindrical poroelastic bone with cavity. Applied Mathematics and Computation, 2002, 133, 257–286.

    Article  MathSciNet  Google Scholar 

  43. Chakkalakal D A, Johnson M, Harper R, Katz J L. Dielectric properties of fluid-saturated bone. IEEE Transactions on Biomedical engineering, 1980, 27, 95–100.

    Article  Google Scholar 

  44. Behari J. Solid state bone behaviour. Progress in Biophysics & Molecular Biology, 1991, 56, 1–41.

    Article  Google Scholar 

  45. Denda M, Wang C Y. 3D BEM for the general piezoelectric solids. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2950–2963.

    Article  MathSciNet  Google Scholar 

  46. Fernández J, Garcáa-Aznar J, Martínez R, Viaño J. Numerical analysis of a strain-adaptive bone remodelling problem. Journal of Computer Methods in Applied Mechanics in Engineering, 2010, 199, 1549–1557.

    Article  MathSciNet  Google Scholar 

  47. Beer Gernot. Programming the Boundary Element Method, Wiley, New York, USA, 2001.

    Google Scholar 

  48. Gaul Lothar, Kögl Martin, Wagner Marcus. Boundary Element Methods for Engineers and Scientists, Springer, Germany, 2003.

    MATH  Google Scholar 

  49. Dunn Martin L, Wienecke H A. Green’s functions for transversely isotropic piezoelectric solid? International Journal of Solids and Structures, 1996, 33, 4571–4581.

    Article  Google Scholar 

  50. Thoeni K. Efficient Calculation of Anisotropic Fundamental Solutions for the Boundary Element Method, Master Thesis, Graz University of Technology Graz, Austria, 2005.

    Google Scholar 

  51. Khutoryansky Naum M, Sosa Horacio. Dynamic representation formulas and fundamental solutions for piezoelectricity. International Journal of Solids and Structures, 1995, 32, 3307–3325.

    Article  MathSciNet  Google Scholar 

  52. Kögl M, Gaul L. A boundary element method for anisotropic coupled thermoelasticity. Archive of Applied Mechanics, 2003, 73, 377–398.

    Article  Google Scholar 

  53. Dziatkiewicz G, Fedelinski P. Dual reciprocity BEM for dynamic piezoelectricity. Proceedings in Applied Mathematics and Mechanics, 2006, 6, 365–366.

    Article  Google Scholar 

  54. Kögl M, Gaul L. A boundary element method for transient piezoelectric analysis. Engineering Analysis with Boundary Elements, 2000, 24, 591–598.

    Article  Google Scholar 

  55. Yang J S. An Introduction to the Theory of Piezoelectricity. Springer, USA, 2005.

    MATH  Google Scholar 

  56. Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Verlag von August Hirsehwold, Germany, 1892. (In German)

    Google Scholar 

  57. Gjelsvik A. Bone remodeling and piezoelectrity - II. Journal of Biomechanics, 1973, 6, 187–193.

    Article  Google Scholar 

  58. Garzón D, Ramírez A, Cardozo C. Numerical test concerning bone mass apposition under electrical and mechanical stimulus. Theoretical Biology and Medical Modelling, 2012, 9, 1–17.

    Article  Google Scholar 

  59. Fernández J, García-Aznar J, Martínez R. Numerical analysis of a piezoelectric bone remodelling model. European Journal of Applied Mathematics, 2012, 23, 635–657.

    Article  MathSciNet  Google Scholar 

  60. Jacobs C R, Simo J C, Beupré G S, Carter D R. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics, 1997, 30, 603–613.

    Article  Google Scholar 

  61. Pettermann H E, Reiter T J, Rammerstorfer F G. Computational simulation of internal bone remodeling. Archives of Computational Methods in Engineering, 1997, 4, 295–323.

    Article  Google Scholar 

  62. Jang I G, Kim I Y. Computational simulation of trabecular adaptation progress in human proximal femur during growth. Journal of Biomechanics, 2009, 42, 573–580.

    Article  Google Scholar 

  63. Doblaré M, García J M. Application of an anisotropic bone remodelling model based on a damage repair theory to the analysis of the proximal femur before and after total hip replacement. Journal of Biomechanics, 2011, 34, 1157–1170.

    Article  Google Scholar 

  64. Nakenhorst U. Numerical simulation of stress stimulated bone remodeling. Technische Mechanik, 1997, 17, 31–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerrolaza, M., Duarte, V. & Garzón-Alvarado, D. Analysis of Bone Remodeling Under Piezoelectricity Effects Using Boundary Elements. J Bionic Eng 14, 659–671 (2017). https://doi.org/10.1016/S1672-6529(16)60432-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60432-8

Keywords

Navigation