Chapter 3 - Self-Assembled Peptide Nanostructures for the Fabrication of Cell Scaffolds

https://doi.org/10.1016/B978-0-323-29642-7.00003-5Get rights and content

Abstract

The fabrication of artificial scaffolds that effectively mimic the host environment of the cell have exciting potential for the treatment of many diseases in regenerative medicine. In particular, appropriately designed scaffolds have the capacity to support, replace, and mediate the transplantation of therapeutic cells in order to regenerate damaged or diseased tissues. To achieve these goals for regeneration, the engineering of an environment structurally similar to the native extracellular matrix (ECM) is necessary in order to closely match the chemical and physical conditions found within the extracellular niche. Recently, self-assembled peptide (SAP) hydrogels have shown great potential for such biological applications due to their inherent biocompatibility, propensity to form higher order structures, rich chemical functionality and ease of synthesis. Importantly, it is possible to control the organization and properties of the target materials as the chemical structure is determined by amino acid sequence. Here, the development of SAP hydrogels as functional cell scaffolds and useful tools in tissue engineering is reviewed.

References (0)

View full text