Reynolds number dependence of Reynolds and dispersive stresses in turbulent channel flow past irregular near-Gaussian roughness

https://doi.org/10.1016/j.ijheatfluidflow.2019.108485Get rights and content
Under a Creative Commons license
open access

Highlights

  • DNS of turbulent channel flow with irregular rough walls is performed.

  • Irregular near-Gaussian roughness synthesized using a surface generation algorithm.

  • Dispersive and Reynolds stresses are compared at four friction Reynolds numbers.

  • Detailed analysis of flow in the fluid-occupied region beneath the roughness crests.

  • Streamwise dispersive stress is predicted using a phenomenologically-inspired model.

Abstract

Direct numerical simulations of fully-developed turbulent channel flow with irregular rough walls have been performed at four friction Reynolds numbers, namely, 180, 240, 360 and 540, yielding data in both the transitionally- and fully-rough regime. The same roughness topography, which was synthesised with an irregular, isotropic and near-Gaussian height distribution, is used in each simulation. Particular attention is directed towards the wall-normal variation of flow statistics in the near-roughness region and the fluid-occupied region beneath the crests, i.e. within the roughness canopy itself. The goal of this study is twofold. (i) Provide a detailed account of first- and second-order double-averaged velocity statistics (including profiles of mean velocity, dispersive stresses, Reynolds stresses, shear stress gradients and an analysis of the mean force balance) with the overall aim of understanding the relative importance of “form-induced” and “turbulence-induced” quantities as a function of the friction Reynolds number. (ii) Investigate the possibility of predicting the levels of streamwise dispersive stress using a phenomenological closure model. Such an approach has been applied successfully in the context of idealised vegetation canopies (Moltchanov & Shavit, 2013, Water Resour. Res., vol. 49, pp. 8222-8233) and is extended here, for the first time, to an irregular rough surface. Overall, the results reveal that strong levels of dispersive stress occur beneath the roughness crests and, for the highest friction Reynolds number considered in this study, show that the magnitude (and gradient) of these “form-induced” stresses exceed their Reynolds stress counterparts. In addition, this study emphasises that the dominant source of spatial heterogeneity within the irregular roughness canopy are “wake-occupied” regions and that a suitable parameterisation of the wake-occupied area is required to obtain an accurate prediction of streamwise dispersive stress.

Keywords

Roughness
Turbulence
Dispersive stress

Cited by (0)