Elsevier

Materials & Design

Volume 185, 5 January 2020, 108251
Materials & Design

Improved fracture toughness by microalloying of Fe in Ti-6Al-4V

https://doi.org/10.1016/j.matdes.2019.108251Get rights and content
Under a Creative Commons license
open access

Highlights

  • The microalloying of Fe in Ti–6Al–4V can effectively improve the fracture toughness.

  • The Fe-alloyed Ti–6Al–4V shows comparable mechanical properties to TC4ELI and TC4DT.

  • The interaction between Fe and V leads to enhanced modulus and increases fracture toughness of TC4F.

  • The kinked β+α lamellae are found nearby the crack of TC4F in contrast with bent α lamellae in TC4.

Abstract

The widely used Ti–6Al–4V (TC4) titanium alloy has been modified through the micro-alloying of Fe. The microstructural features and mechanical properties of the designed alloy, TC4F, are compared with other alloys in Ti–6Al–4V class by combining experimental characterizations and thermodynamic calculations. TC4F alloy not only maintains strength, hardness, and elongation similar to baseline TC4 but also exhibits improved fracture toughness comparable to TC4_ELI and even superior to TC4_DT under the heat-treated condition. It opens up a new cost-reducing way to enhance fracture toughness in place of controlling interstitial contents, showing potential in engineering applications. The discerned mechanisms indicate that the trace addition of Fe gives rise to composition redistribution between V and Fe in the β phase, boosts the lattice distortion and vibration, thereafter enhances Young's modulus and fracture toughness. It has been validated and verified by experiments, thermodynamic calculations, and Hahn-Rosenfield empirical research. The enhanced fracture toughness also benefits from the kinked β+α lamellar microstructure at crack tip as well as the improved fracture surface due to the Fe addition. The enlarged plastic zone, redirected crack propagation, and more dimples with even-distributed size additionally contribute to the improvement of fracture toughness.

Keywords

Micro-alloying of Fe
Ti–6Al–4V
Fracture toughness
Enhanced modulus
Composition redistribution of V and Fe

Cited by (0)