Elsevier

NeuroImage: Clinical

Volume 18, 2018, Pages 315-324
NeuroImage: Clinical

Telomere length and advanced diffusion MRI as biomarkers for repetitive mild traumatic brain injury in adolescent rats

https://doi.org/10.1016/j.nicl.2018.01.033Get rights and content
Under a Creative Commons license
open access

Highlights

  • Track-weighted imaging metrics detect repeated mild TBI induced white matter changes.

  • Telomere length is significantly shorter in rats given repeated mild TBI.

  • Telomere length is correlated with DWI metrics.

Abstract

Mild traumatic brain injuries (mTBI) are of worldwide concern in adolescents of both sexes, and repeated mTBI (RmTBI) may have serious long-term neurological consequences. As such, the study of RmTBI and discovery of objective biomarkers that can help guide medical decisions is an important undertaking. Diffusion-weighted MRI (DWI), which provides markers of axonal injury, and telomere length (TL) are two clinically relevant biomarkers that have been implicated in a number of neurological conditions, and may also be affected by RmTBI. Therefore, this study utilized the lateral impact injury model of RmTBI to investigate changes in diffusion MRI and TL, and how these changes relate to each other. Adolescent male and female rats received either three mTBIs or three sham injuries. The first injury was given on postnatal day 30 (P30), with the repeated injuries separated by four days each. Seven days after the final injury, a sample of ear tissue was collected for TL analysis. Rats were then euthanized and whole brains were collected and fixated for MRI analyses that included diffusion and high-resolution structural sequences. Compared to the sham-injured group, RmTBI rats had significantly shorter TL at seven days post-injury. Analysis of advanced DWI measures found that RmTBI rats had abnormalities in the corpus callosum and cortex at seven days post-injury. Notably, many of the DWI changes were correlated with TL. These findings demonstrate that TL and DWI measurements are changed by RmTBI and may represent clinically applicable biomarkers for this.

Keywords

Biomarker
Concussion
Track weighted imaging
Animal model
Diffusion tensor imaging
MRI

Cited by (0)

1

Joint senior authors.