Elsevier

Procedia CIRP

Volume 76, 2018, Pages 7-12
Procedia CIRP

Creation of configurations for an assembly system with a scalable level of automation

https://doi.org/10.1016/j.procir.2018.01.024Get rights and content
Under a Creative Commons license
open access

Abstract

Due to shortened product lifecycles and an increasing number of variants, the need for scalable assembly systems is rising. This trend is even stronger in the production of emerging technologies. An important step in the planning of a scalable assembly system is the creation of system configurations. State of the art is a scaling of the system from a manual, over semi-automated to an automated system during the start of production. This process is very rigid and does not offer the flexibility which is necessary to react to highly volatile influencing factors. The authors have identified the urgent need for a thorough scenario analysis to adequately consider the risk in predicting volatile influencing factors. In this paper, a two-part methodology is proposed considering multiple scaling mechanisms allowing for a swift and cost-effective adaptation to external factors. The first part is concerned with the scenario analysis. In this part, the planner has to identify the volatile receptors that influence their production. For each of the identified receptors, market studies and workshops with internal experts are conducted to develop a detailed scenario analysis, modelled in a modified BPMN logic. In the second part, the planner needs to develop production system configurations according to the results of the scenario analysis. The appropriate scaling mechanisms are chosen based on the volatile receptors. The application of these mechanisms on station level results in various station concepts satisfying the entire range of expected values within the volatile receptors.

Keywords

scalability
changeability
scenario analysis
PEMFC
fuel cell production

Cited by (0)