Elsevier

Procedia CIRP

Volume 87, 2020, Pages 95-100
Procedia CIRP

Milling parameter and tool wear dependent surface quality in micro-milling of brass

https://doi.org/10.1016/j.procir.2020.02.024Get rights and content
Under a Creative Commons license
open access

Abstract

Short life-time and high tool costs still remain major constraints for the micro-milling process. Understanding the wear mechanisms and their effects on the workpiece quality is essential for efficient tool usage. Usually, wear increases the cutting forces and reduces the emerging surface quality during the micro-milling process. Due to high tool costs, cutting parameters are usually chosen for optimal tool lifetime and/or process time rather than optimal surface quality.

The scope of this paper is to investigate the correlation of the process parameters, strategy and wear status of the tool on the resulting surface topography. To reach this goal, micro-milling experiments were conducted, in which several grooves were milled using two end milling tools, new and worn, with a diameter of 1.5 mm and four cutting edges. The cutting speed and feed were varied, as well as the cutting direction. Brass was chosen as workpiece material to ensure a constant wear state of the tools during the experiments. During the cutting process the process forces were recorded and examined for their magnitude and frequency response. Furthermore, the grooves were analyzed optically for their surface roughness.

The roughness shows in most cases slightly higher values for the specimen manufactured with the worn tool than the ones done with the new tool. The biggest influence on the surface roughness results from the feed rate, while cutting speed and milling strategy have a smaller influence. The measured cutting forces show similar tendencies, than the resulting surface roughness. The results show also a significant influence of tool wear on the vibration behavior during the process, while the influence of feed rate is mostly negligible. This results partly from the greater tool runout and bigger deviation of the cutting edges.

Keywords

micro milling
roughness
wear

Cited by (0)