Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-17T19:37:40.895Z Has data issue: false hasContentIssue false

Reconstruction of a complex late Quaternary glacial landscape in the Cordillera de Cochabamba (Bolivia) based on a morphostratigraphic and multiple dating approach

Published online by Cambridge University Press:  20 January 2017

Jan-Hendrik May*
Affiliation:
School of Earth and Environmental Sciences, University of Wollongong, Wollongong 2522 NSW, Australia
Jana Zech
Affiliation:
Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Roland Zech
Affiliation:
Geologisches Institut, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
Frank Preusser
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Jaime Argollo
Affiliation:
Instituto de Investigaciones Geológicas y del Medioambiente, Universidad Mayor de San Andres, La Paz, Bolivia
Peter W. Kubik
Affiliation:
Laboratory of Ion Beam Physics, ETH Zürich, Schafmattstrasse 20, 8093 Zürich, Switzerland
Heinz Veit
Affiliation:
Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
*
Corresponding author. E-mail address:hmay@uow.edu.au (J.-H. May).

Abstract

Although glacial landscapes have previously been used for the reconstruction of late Quaternary glaciations in the Central Andes, only few data exist for the Eastern Cordillera in Bolivia. Here, we present results from detailed morphostratigraphic mapping and new data of surface exposure dating (SED), optically stimulated luminescence (OSL), and radiocarbon dating (14C) from the Huara Loma Valley, Cordillera de Cochabamba (Bolivia). Discrepancies between individual dating methods could be addressed within the context of a solid geomorphic framework. We identified two major glaciations. The older is not well constrained by the available data, whereas the younger glaciation is subdivided into at least four major glacial stages. Regarding the latter, a first advance dated to ~ 29–25 ka occurred roughly contemporaneous with the onset of the global last glacial maximum (LGM) and was followed by a less extensive (re-)advance around 20–18 ka. The local last glacial maximum (LLGM) in the Huara Loma Valley took place during the humid lateglacial ~17–16 ka, followed by several smaller readvances until ~10–11 ka, and complete deglaciation at the end of the Early Holocene.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden.

References

Anderson, S.P. Biogeochemistry of glacial landscape systems. Annual Review of Earth and Planetary Sciences 35, (2007). 375399.CrossRefGoogle Scholar
Argollo, J. (1980). “Los Pie de Montes de la Cordillera Real entre los Valles de La Paz y de Tuni: Estudio Geologico, Evolution Plio-Cuaternaria.”. Type thesis, Universidad Mayor de San Andres, .Google Scholar
Argollo, J., and Mourguiart, P. Late Quaternary climate history of the Bolivian Altiplano. Quaternary International 72, (2000). 3751.Google Scholar
Asikainen, C.A., Francus, P., and Brigham-Grette, J. Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El'gygytgyn Crater Lake, Northeastern Siberia. Journal of Paleolimnology 37, (2007). 105122.Google Scholar
Bach, A.J., Dorn, R.I., Elliott-Fisk, D.L., and Phillips, F.M. Glacial avulsion in Pleistocene moraine complexes of the east-central Sierra Nevada. Hall, C.A. White Mountain Research Station. Symposium Proceedings vol. 4, (1992). 1731.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., and Veliz, C. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, (2001). 698701.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The history of South American tropical precipitation for the past 25,000 years. Science 291, (2001). 640643.CrossRefGoogle ScholarPubMed
Benn, D.I., and Evans, D.J.A. Glaciers and Glaciation. (1998). Arnold, Google Scholar
Benn, D.I., and Owen, L.A. Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quaternary International 98, (2002). 325.Google Scholar
Benn, D.I., Kirkbride, M.P., Owen, L.A., and Brazier, V. Glaciated valley landsystems. Evans, D.J.A. Glacial Landsystems. (2003). 372406.Google Scholar
Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C., and Mark, B. Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International 138–139, (2005). 821.CrossRefGoogle Scholar
Blard, P.-H., Lavé, J., Farley, K.a., Fornari, M., Jiménez, N., and Ramirez, V. Late local glacial maximum in the Central Altiplano triggered by cold and locally-wet conditions during the paleolake Tauca episode (17–15 ka, Heinrich 1). Quaternary Science Reviews 28, (2009). 34143427.Google Scholar
Bottrell, S.H., and Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d'Arolla, Switzerland. Hydrological Processes 16, (2002). 23632368.Google Scholar
Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C., and Caffee, M.W. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin 117, (2005). 11081120.Google Scholar
Bromley, G. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews 28, (2009). 25142526.CrossRefGoogle Scholar
Clapperton, C.M. Quaternary Geology and Geomorphology of South America. (1993). Elsevier, Amsterdam.Google Scholar
Clapperton, C. Interhemispheric synchroneity of Marine Oxygen Isotope Stage 2 glacier fluctuations along the American cordilleras transect. Journal of Quaternary Science 15, (2000). 435468.3.0.CO;2-R>CrossRefGoogle Scholar
Clapperton, C., and Seltzer, G.O. Glaciation during Marine Isotope Stage 2 in the American Cordillera. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, 173181.Google Scholar
Clapperton, C.M., Clayton, J.D., Benn, D.I., Marden, C.J., and Argollo, J. Late Quaternary glacier advances and palaeolake highstands in the Bolivian Altiplano. Quaternary International 38–39, (1997). 4959.CrossRefGoogle Scholar
Clark, D.H., Clark, M.M., and Gillespie, A.R. Debris-covered glaciers in the Sierra Nevada, California, and their implications for snowline reconstructions. Quaternary Research 41, (1994). 139153.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. The Last Glacial Maximum. Science 325, (2009). 710714.Google Scholar
Farber, D.L., Hancock, G.S., Finkel, R.C., and Rodbell, D.T. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20, (2005). 759776.Google Scholar
Fox, A.N., and Strecker, M.R. Pleistocene and modern snowlines in the Central Andes (24–28°S). Bamberger Geographische Schriften 11, (1991). 169182.Google Scholar
Francou, B., Ribstein, P., Wagnon, P., Ramirez, E., and Pouyaud, B. Glaciers of the Tropical Andes: indicators of global climate variability. Huber, U.M., Bugmann, H.K.M., and Reasoner, M.A. Global Change and Mountain Regions: An Overview of Current Knowledge. (2005). Springer, 197204.Google Scholar
Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.-L., and Luo, S. Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research 61, (2004). 95104.Google Scholar
Fuchs, M., and Owen, L.a. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37, (2008). 636659.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., and Olley, J.M. Optical Dating of Single and Multiple Grains of Quartz From Jinmium Rock Shelter, Northern Australia: Part I, Experimental Design and Statistical Models. Archaeometry 41, (1999). 339364.Google Scholar
Garreaud, R.D., and Aceituno, P. Atmospheric circulation and climatic variability. Veblen, T.T., Young, K.R., and Orme, A.R. The Physcial Geography of South America. (2007). Oxford University Press, Oxford. 4559.Google Scholar
Gibbons, A.B., Megeath, J.D., and Pierce, K.L. Probability of moraine survival in a succession of glacial advances. Geology 12, (1984). 327330.Google Scholar
Heine, K. Late Quaternary glaciations of Bolivia. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations — Extent and Chronology, Part III. (2004). Elsvier, 8388.Google Scholar
Hormes, A., Karlén, W., and Possnert, G. Radiocarbon dating of palaeosol components in moraines in Lapland, northern Sweden. Quaternary Science Reviews 23, (2004). 20312043.CrossRefGoogle Scholar
Hughes, P.D. Geomorphology and Quaternary stratigraphy: the roles of morpho-, litho-, and allostratigraphy. Geomorphology 123, (2010). 189199.Google Scholar
Imaizumi, T., Nogami, M., Hirakawa, K., and Koaze, T. Active faults and Quaternary geo-history of the Altiplano on the foot of the Cordillera Real, Bolivia. Geographical Reports of Tokyo Metropolitan University 35, (2000). 5158.Google Scholar
Imhof, S., Kull, C., May, J.-H., Grosjean, M., and Veit, H. Temperature reduction and local last glaciacion maximum (LLGM). The example of the east-Andean Cordillera around Cochabamba, Bolivia (17°S). Geographica Helvetica 61, (2006). 91106.Google Scholar
Jordan, E. Glaciers of Bolivia. Williams, R.S. Jr., and Ferrigno, J.G. Satellite image atlas of glaciers of the world. (1999). Google Scholar
Keller, W.D. Environmental aspects of clay minerals. Journal of Sedimentary Petrology 40, (1970). 788854.CrossRefGoogle Scholar
Kelly, T.E., and Baker, C.H.J. Color variations within glacial till, east central North Dakota — a preliminary investigation. Journal of Sedimentary Petrology 36, (1966). 7580.Google Scholar
Kennan, L. Cenozoic evolution of the Cochabamba area. 2nd ISAG. (1993). Google Scholar
Klein, A.G., Seltzer, G.O., and Isacks, B.L. Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile. Quaternary Science Reviews 18, (1999). 6384.CrossRefGoogle Scholar
Kronberg, B.I., and Nesbitt, H.W. Quantification of weathering, soil geochemistry and soil fertility. Journal of Soil Science 32, (1981). 453459.Google Scholar
Kull, C., Imhof, S., Grosjean, M., Zech, R., and Veit, H. Late Pleistocene glaciation in the Central Andes: temperature versus humidity control — a case study from the eastern Bolivian Andes (17°S) and regional synthesis. Global and Planetary Change 60, (2008). 148164.Google Scholar
Lliboutry, L. Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. II. Movement of a covered glacier embedded within a rock glacier. Journal of Glaciology 18, (1977). 255273.Google Scholar
Lukas, S. Moräne oder Till? Ein Vorschlag zur Beschreibung, Interpretation und Benennung Glazigener Sedimente. Zeitschrift für Gletscherkunde und Glaziologie 39, (2006). 141159.Google Scholar
Lukas, S. Morphostratigraphic principles in glacier reconstruction — a perspective from the British Younger Dryas. Progress in Physical Geography 30, (2006). 719736.Google Scholar
Mark, B.G. Tracing tropical Andean glaciers over space and time: some lessons and transdisciplinary implications. Global and Planetary Change 60, (2008). 101114.CrossRefGoogle Scholar
Mark, B.G., Harrison, S.P., Spessa, A., New, M., Evans, D.J.A., and Helmens, K.F. Tropical snowline changes at the Last Glacial Maximum: a global assessment. Quaternary International 138, (2005). 168201.Google Scholar
Markgraf, V., Baumgartner, T.R., Bradbury, J.P., Diaz, H.F., Dunbar, R.B., Luckman, B.H., Seltzer, G.O., Swetnam, T.W., and Villalba, R. Paleoclimate reconstruction along the Pole–Equator–Pole transect of the Americas (PEP 1). Quaternary Science Reviews 19, (2000). 125140.Google Scholar
Martin, C.W., and Johnson, W.C. Variation in radiocarbon ages of soil organic matter fractions from Late Quaternary buried soils. Quaternary Research 43, (1995). 232237.CrossRefGoogle Scholar
Matthews, J.A. Limitations of 14 C dates from buried soils in reconstructing glacier variations and Holocene climates. Mörner, N.-A., and Karlén, W. Climatic Changes on a Yearly to Millennial Basis. (1984). Kluwer, 281290.Google Scholar
Mercer, J.H., and Palacios, O.M. Radiocarbon dating of the last glaciation in Peru. Geology 5, (1977). 600604.Google Scholar
Mix, A.C., Bard, E., and Schneider, R. Environmental processes of the ice age : land, oceans, glaciers ( EPILOG ). Quaternary Science Reviews 20, (2001). 627657.Google Scholar
Müller, R. (1985). “Zur Gletschergeschichte in der Cordillera Quimsa Cruz.”. Type thesis, Universität Zürich, .Google Scholar
Murray, A.S., and Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 33, (2000). 5773.CrossRefGoogle Scholar
Parker, A. An index of weathering for silicate rocks. Geological Magazine 107, (1970). 501504.CrossRefGoogle Scholar
Phillips, F.M., Zreda, M., Plummer, M.A., Elmore, D., and Clark, D.H. Glacial geology and chronology of Bishop Creek and vicinity, eastern Sierra Nevada, California. Geological Society of America Bulletin 121, (2009). 10131033.Google Scholar
Placzek, C., Quade, J., and Patchett, P.J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, (2006). 515532.CrossRefGoogle Scholar
Preusser, F., Blei, A., Graf, H., and Schlüchter, C. Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: methodological aspects and stratigraphical conclusions. Boreas 36, (2007). 130142.CrossRefGoogle Scholar
Putkonen, J., and Swanson, T. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, (2003). 255261.Google Scholar
Ramage, J.M., Smith, J.A., Rodbell, D.T., and Seltzer, G.O. Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru. Journal of Quaternary Science 20, (2005). 777788.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Renner, S., and Velasco, C. Geología e Hidrogeología del Valle Central de Cochabamba. Cochabamba, Bolivia Boletín del Servicio Nacional de Geología y Mineria 34, (2000). Google Scholar
Schaetzl, R.J., and Anderson, S. Soils: Genesis and Geomorphology. (2005). Cambridge University Press, Google Scholar
Seltzer, G.O. Late Quaternary glaciation in the tropical Andes. Veblen, T.T., Young, K.R., and Orme, A.R. The physical geography of South America. (2007). Oxford University Press, Oxford. 6075.Google Scholar
Sempere, T. Phanerozoic evolution of Bolivia and adjacent regions. Tankard, A.J., Suárez-Soruco, R., and Welsink, H.J. Petroleum basins of South America. (1995). 207230.Google Scholar
Servant, M., Fontes, J.-C., Argollo, J., and Saliege, J.-F. Variationes du régime et de la nature des précipitacions au cours des 15 derniers millénaires dans les Andes de Bolivie. C.R. Acad. Sc. Paris, Serie II 292, (1981). 12091212.Google Scholar
Servant, M., Fournier, M., Argollo, J., Servant-Vildary, S., Sylvestre, F., Wirrmann, D., and Ybert, J.-P. La diernière glaciare/interglaciaire des Andes tropicales sud (Bolivie) d'apres l'étude des variation des niveaux lacustres et des fluctuations glaciaires. Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science 320, (1995). 729736.Google Scholar
Sheffels, B.M. Is the bend in the Bolivian Andes an orocline?. Tankard, A.J., Suárez, R.S., and Welsink, H.J. Petroleum Basins of South America. (1995). 511522.Google Scholar
Singer, A. The paleoclimatic interpretation of clay minerals in sediments — a review. Earth-Science Reviews 21, (1984). 251293.Google Scholar
Smith, J.A., and Rodbell, D.T. Cross-cutting moraines reveal evidence for North Atlantic influence on glaciers in the tropical Andes. Journal of Quaternary Science 25, (2010). 243248.Google Scholar
Smith, J.A., Finkel, R.C., Farber, D.L., Rodbell, D.T., and Seltzer, G.O. Moraine preservation and boulder erosion in the tropical Andes: interpreting old surface exposure ages in glaciated valleys. Journal of Quaternary Science 20, (2005). 735758.Google Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., and Finkel, R.C. Early local last glacial maximum in the tropical Andes. Science 308, (2005). 678681.Google Scholar
Smith, J.A., Seltzer, G.O., Rodbell, D.T., and Klein, A.G. Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quaternary International 138–139, (2005). 145167.Google Scholar
Smith, M.J., Rose, J., and Booth, S. Geomorphological mapping of glacial landforms from remotely sensed data: an evaluation of the principal data sources and an assessment of their quality. Geomorphology 76, (2006). 148165.Google Scholar
Smith, C., Lowell, T., and Caffee, M. Lateglacial and Holocene cosmogenic surface exposure age glacial chronology and geomorphological evidence for the presence of cold-based glaciers at Nevado Sajama, Bolivia. Journal of Quaternary Science 24, (2009). 360372.CrossRefGoogle Scholar
Smith, C.A., Lowell, T.V., Owen, L.A., and Caffee, M.W. Late Quaternary glacial chronology on Nevado Illimani, Bolivia, and the implications for paleoclimatic reconstructions across the Andes. Quaternary Research 75, (2011). 110.CrossRefGoogle Scholar
Solotchina, E.P., Prokopenko, A.A., Vasilevsky, A.N., Gavshin, V.M., Kuzmin, M.I., and Williams, D.F. Simulation of XRD patterns as an optimal technique for studying glacial and interglacial clay mineral associations in bottom sediments of Lake Baikal. Clay Minerals 37, (2002). 105119.Google Scholar
Steffen, D., Preusser, F., and Schlunegger, F. OSL quartz age underestimation due to unstable signal components. Quaternary Geochronology 4, (2009). 353362.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14 C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Suárez-Soruco, R. Compendio de Geología de Bolivia. La Paz, Bolivia Revista Técnica de YPBF 18, (2000). Google Scholar
Thomas, P., Murray, A., Kjær, K., Funder, S., and Larsen, E. Optically stimulated luminescence (OSL) dating of glacial sediments from Arctic Russia — depositional bleaching and methodological aspects. Boreas 35, (2006). 587599.Google Scholar
Thrasher, I.M., Mauz, B., Chiverrell, R.C., and Lang, A. Luminescence dating of glaciofluvial deposits: a review. Earth Science Reviews 97, (2009). 133146.Google Scholar
Tranter, M., Sharp, M.J., Lamb, H.R., Brown, G.H., Hubbard, B.P., and Willis, I.C. Geochemical weathering at the bed of Haut Glacier d'Arolla, Switzerland — a new model. Hydrological Processes 16, (2002). 959993.Google Scholar
Troll, C. Die Cordillera Real. Vorläufiger Bericht über die wissenschaftlichen Arbeiten der Anden-Expedition des Deutsch-Österreichischen Alpenvereins 1928. Zeitschrift der Gesellschaft für Erdkunde zu Berlin 7/8, (1929). Google Scholar
Troll, C., and Finsterwalder, R. Die Karten der Cordillera Real und des Talkessels von La Paz (Bolivien) und die Diluvialgeschichte der zentralen Anden. Petermanns Geographische Mitteilungen 81, (1935). 393399. 445455.Google Scholar
Velde, B. Introduction to Clay Minerals. Chemistry, Origins and Environmental Significance. (1992). Chapman & Hall, Google Scholar
Verstappen, H.T. Remote Sensing in Geomorphology. (1977). Elsevier, Amsterdam.Google Scholar
Volpi, R.W., and Szabo, J.P. Influence of local bedrock on the clay mineralogy of pre-Woodfordian tills of the Grand River lobe in Columbiana County, Ohio. The Ohio Journal of Science 88, (1988). 174180.Google Scholar
Wang, Y., Amundson, R., and Trumbore, S. Radiocarbon dating of soil organic matter. Quaternary Research 45, (1996). 282288.Google Scholar
Wintle, A.G., and Murray, A.S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, (2006). 369391.Google Scholar
Zech, R., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains (Tajikistan) from 10Be surface exposure dating. Earth and Planetary Science Letters 237, (2005). 453461.CrossRefGoogle Scholar
Zech, R., Kull, C., Kubik, P.W., and Veit, H. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia) deduced from 10Be surface exposure dating. Climate of the Past 3, (2007). 623635.Google Scholar
Zech, R., May, J.-H., Kull, C., Ilgner, J., Kubik, P.W., and Veit, H. Timing of the late Quaternary glaciation in the Andes from 15 to 40° S. Journal of Quaternary Science 23, (2008). 635647.Google Scholar
Zech, J., Zech, R., Kubik, P.W., and Veit, H. Glacier and climate reconstruction at Tres Lagunas, NW Argentina, based on 10Be surface exposure dating and lake sediment analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 284, (2009). 180190.Google Scholar
Zech, R., Smith, J.A., and Kaplan, M.R. Chronologies of the Last Glacial Maximum and its termination in the Andes (~ 10–55°S) based on surface exposure dating. Vimeux, F., Sylvestre, F., and Khodri, M. Past Climate Variability in South America and Surrounding Regions. From the Last Glacial Maximum to the Holocene. (2009). Springer, 6187.Google Scholar
Zech, J., Zech, R., May, J.-H., Kubik, P.W., and Veit, H. Lateglacial and early Holocene glaciation in the tropical Andes caused by La Niña-like conditions. Palaeogeography, Palaeoclimatology, Palaeoecology 293, (2010). 248254.Google Scholar
Zhou, J., and Lau, K.-M. Does a monsoon climate exist over South America?. Journal of Climate 11, (1998). 10201040.2.0.CO;2>CrossRefGoogle Scholar
Zreda, M., Clapperton, C., Argollo, J., and Shanahan, T. Evidence for contemporary lakes and glaciers in the Southern Altiplano during Late Glacial time (extended abstract). Fifth Iberian Quaternary Meeting. (2001). Lisboa, Portugal.Google Scholar
Supplementary material: PDF

May et al. Supplementary Material

Supplementary Material

Download May et al. Supplementary Material(PDF)
PDF 1.2 MB