Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T10:33:24.677Z Has data issue: false hasContentIssue false

5 - Predicting Distributions of Invasive Species

Published online by Cambridge University Press:  03 July 2017

Andrew P. Robinson
Affiliation:
University of Melbourne
Terry Walshe
Affiliation:
Australian Institute of Marine Science
Mark A. Burgman
Affiliation:
Imperial College London
Mike Nunn
Affiliation:
Australian Centre for International Agricultural Research
Get access
Type
Chapter
Information
Invasive Species
Risk Assessment and Management
, pp. 93 - 129
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164(3 Suppl), S165S184.CrossRefGoogle Scholar
Aikio, S., Duncan, R. P. & Hulme, P. E. (2010). Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand. Journal of Biogeography, 37(9), 17401751.CrossRefGoogle Scholar
Alexander, J. M. & Edwards, P. J. (2010). Limits to the niche and range margins of alien species. Oikos, 119(9), 13771386.Google Scholar
Anderson, R. P. (2012). Harnessing the world’s biodiversity data: Promise and peril in ecological niche modeling of species distributions. Annals of the New York Academy of Sciences, 1260, 6680.Google Scholar
Araújo, M. B. & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 4247.CrossRefGoogle ScholarPubMed
Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. (2005). Reducing uncertainty in projections of extinction risk from climate change. Global Ecology & Biogeography, 14(6), 529538.Google Scholar
Argaez, J. A., Christen, J. A., Nakamura, M. & Soberon, J. (2005). Prediction of potential areas of species distributions based on presence-only data. Environment and Ecological Statistics, 12(1), 2744.Google Scholar
Ascough, J. C. II, Maier, H. R., Ravalico, J. K. & Strudley, M. W. (2008). Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecological Modelling, 219(3–4), 383399.Google Scholar
Austin, M. P. (2002). Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecological Modelling, 157(2–3), 101118.CrossRefGoogle Scholar
Austin, M. P. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1–2), 119.Google Scholar
Austin, M. P., Belbin, L., Meyers, J. A., Doherty, M. D. & Luoto, M. (2006). Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecological Modelling, 199(2), 197216.Google Scholar
Austin, M. P., Nicholls, A. O. & Margules, C. R. (1990). Measurement of the realized qualitative niche: Environmental niches of five eucalyptus species. Ecological Monographs, 60(2), 161177.Google Scholar
Austin, M. P. & van Niel, K. P. (2011). Improving species distribution models for climate change studies: Variable selection and scale. Journal of Biogeography, 38(1), 18.Google Scholar
Baker, R. H. A., Sansford, C. E., Jarvis, C. H., et al. (2000). The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment, 82(1–3), 5771.Google Scholar
Barry, S. C. & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43(3), 413423.Google Scholar
Barve, N., Barve, V., Jiménez-Valverde, A., et al. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 18101819.Google Scholar
Bio, A. M. F., De Becker, P., De Bie, E., Huybrechts, W., & Wassen, M. (2002). Prediction of plant species distribution in lowland river valleys in Belgium: Modelling species response to site conditions. Biodiversity and Conservation, 11(12), 21892216.CrossRefGoogle Scholar
Bomford, M., Barry, S. C. & Lawrence, E. (2010). Predicting establishment success for introduced freshwater fishes: A role for climate matching. Biological Invasions, 12(8), 25592571.Google Scholar
Booth, T. H., Nix, H. A., Hutchinson, M. F. & Jovanovic, T. (1988). Niche analysis and tree species introduction. Forest Ecology and Management, 23(1), 4759.Google Scholar
Broennimann, O. & Guisan, A. (2008). Predicting current and future biological invasions: Both native and invaded ranges matter. Biology Letters, 4(5), 585589.Google Scholar
Broennimann, O., Treier, U. A., Müller-Schärer, H., et al. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10(8), 701709.Google Scholar
Brunel, S., Branquart, E., Fried, G., et al. (2010). The EPPO prioritization process for invasive alien plants. EPPO Bulletin, 40(3), 407422.Google Scholar
Buckley, L. B., Urban, M. C., Angilletta, M. J., et al. (2010). Can mechanism inform species’ distribution models? Ecology Letters, 13(8), 10411054.Google Scholar
Burgman, M. A., Breininger, D. R., Duncan, B. W. & Ferson, S. (2001). Setting reliability bounds on habitat suitability indices. Ecological Applications, 11(1), 7078.Google Scholar
Busby, J. R. (1991). BIOCLIM – A bioclimate analysis and prediction system. In Margules, C. R. & Austin (eds.), M. P. Nature conservation: Cost effective biological surveys and data analysis (pp. 6468). Canberra, Australia: CSIRO.Google Scholar
Capinha, C. & Anastácio, P. (2010). Assessing the environmental requirements of invaders using ensembles of distribution models. Diversity and Distributions, 17(1), 1324.Google Scholar
Chuine, I. & Beaubien, E. G. (2001). Phenology is a major determinant of tree species range. Ecology Letters, 4(5), 500510.CrossRefGoogle Scholar
Colwell, R. K. & Rangel, T. F. (2009). Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences of the USA, 106(Suppl 2), 1965119658.CrossRefGoogle ScholarPubMed
Cook, D. C., Thomas, M. B., Cunningham, S. A., Anderson, D. L. & De Barro, P. J. (2007). Predicting the economic impact of an invasive species on an ecosystem service. Ecological Applications, 17(6), 18321840.CrossRefGoogle Scholar
Cook, W. C. (1925). The distribution of the alfalfa weevil (Phytonomus posticus Gyll.). A study in physical ecology. Journal of Agricultural Research, 30(5), 479491.Google Scholar
De’ath, G. & Fabricius, K. E. (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81(11), 31783192.CrossRefGoogle Scholar
Dorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Global Ecology and Biogeography, 23(12), 14721484.Google Scholar
Dormann, C. F., Elith, J., Bacher, S., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 2746.Google Scholar
Dormann, C. F., McPherson, J. M., Araújo, M. B., et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609628.CrossRefGoogle Scholar
Dormann, C. F., Purschke, O., García-Márquez, J., Lautenbach, S. & Schröder, B. (2008). Components of uncertainty in species distribution analysis: A case study of the Great Grey Shrike. Ecology, 89(12), 33713386.Google Scholar
Dormann, C. F., Schymanski, S. J., Cabral, J., et al. (2012). Correlation and process in species distribution models: Bridging a dichotomy. Journal of Biogeography, 39(12), 21192131.CrossRefGoogle Scholar
Drake, J. M. & Bossenbroek, J. M. (2009). Profiling ecosystem vulnerability to invasion by zebra mussels with support vector machines, Theoretical Ecology, 2(4), 189198.Google Scholar
Elith, J., Burgman, M. A. & Regan, H. M. (2002). Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling, 157(2–3), 313329.Google Scholar
Elith, J. & Graham, C. (2009). Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32(1), 6677.CrossRefGoogle Scholar
Elith, J., Graham, C. H., Anderson, R. P., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129151.Google Scholar
Elith, J., Kearney, M. & Phillips, S. J. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330342.Google Scholar
Elith, J. & Leathwick, J. R. (2009a). The contribution of species distribution modelling to conservation prioritization. In Moilanen, A., Wilson, K. A. & Possingham (eds.), H. Spatial conservation prioritization: Quantitative methods & computational tools (pp. 7093).New York: Oxford University Press.Google Scholar
Elith, J. & Leathwick, J. R. (2009b). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677697.Google Scholar
Elith, J., Phillips, S. J., Hastie, T., et al. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 4357.CrossRefGoogle Scholar
Elith, J., Simpson, J., Hirsch, M. & Burgman, M.A. (2013) Taxonomic uncertainty and decision making for biosecurity: Spatial models for myrtle/guava rust. Australasian Plant Pathology, 42(1), 4351.CrossRefGoogle Scholar
Engler, R., Guisan, A. & Rechsteiner, L. (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41(2), 263274.Google Scholar
Eraud, C., Boutin, J.-M., Roux, D. & Faivre, B. (2007). Spatial dynamics of an invasive bird species assessed using robust design occupancy analysis: The case of the Eurasian collared dove (Streptopelia decaocto) in France. Journal of Biogeography, 34(6), 10771086.Google Scholar
Falk, W. & Mellert, K. H. (2011). Species distribution models as a tool for forest management planning under climate change: Risk evaluation of Abies alba in Bavaria. Journal of Vegetation Science, 22(4), 621634.CrossRefGoogle Scholar
Fensterer, V. (2010) Statistical methods in niche modelling for the spatial prediction of forest tree species. Diploma thesis, Ludwig-Maximilians-University Munich. www.osti.gov/eprints/topicpages/documents/record/277/2903664.htmlGoogle Scholar
Ferrier, S., Watson, G., Pearce, J. & Drielsma, M. (2002). Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiversity and Conservation, 11(12), 22752307.Google Scholar
Fielding, A. H. & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 3849.Google Scholar
Fithian, W., Elith, J., Hastie, T. & Keith, D. (2015). Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods in Ecology and Evolution, 6(4), 424438.Google Scholar
Fithian, W. & Hastie, T. (2013) Statistical models for presence-only data: Finite-sample equivalence and addressing observer bias. Annals of Applied Statistics, 7(4), 19171939.Google Scholar
Fleishman, E., Macnally, R., Fay, J. P. & Murphy, D. D. (2001). Modeling and predicting species occurrence using broad-scale environmental variables: An example with butterflies of the Great Basin. Conservation Biology, 15(6), 16741685.Google Scholar
Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Funk, V. A. & Richardson, K. S. (2002). Systematic data in biodiversity studies: Use it or lose it. Systematic Biology, 51(2), 303316.Google Scholar
Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. (2010). Predicting potential distributions of invasive species: Where to go from here? Diversity and Distributions, 16(3), 331342.Google Scholar
Gevrey, M. & Worner, S. P. (2006). Prediction of global distribution of insect pest species in relation to climate by using an ecological informatics method. Journal of Economic Entomology, 99(3), 979986.Google Scholar
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution, 19(9), 497503.Google Scholar
Guisan, A. & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 9931009.CrossRefGoogle ScholarPubMed
Guisan, A. & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147186.Google Scholar
Guo, Q., Kelly, M. & Graham, C. H. (2005). Support vector machines for predicting distribution of sudden oak death in California. Ecological Modelling, 182(1), 7590.CrossRefGoogle Scholar
Gutzwiller, K. J. & Barrow, W. C., Jr. (2001). Bird-landscape relations in the Chihuahuan Desert: Coping with uncertainties about predictive models. Ecological Applications, 11(5), 15171532.Google Scholar
Harrell, F. E., Jr. (2006). Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis, 2nd ed. New York: Springer Science+Business Media.Google Scholar
Hartley, S., Harris, R. & Lester, P. J. (2006). Quantifying uncertainty in the potential distribution of an invasive species: Climate and the Argentine ant. Ecology Letters, 9(9), 10681079.Google Scholar
Hastie, T., Tibshirani, R. & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction, 2nd ed. New York, NY: Springer Science + Business Media.Google Scholar
Heikkinen, R. K., Luoto, M., Kuussaari, M. & Toivonen, T. (2007). Modelling the spatial distribution of a threatened butterfly: Impacts of scale and statistical technique. Landscape and Urban Planning, 79(3–4), 347357.Google Scholar
Herborg, L. M., Drake, J. M., Rothlisberger, J. D. & Bossenbroek, J. M. (2009). Identifying suitable habitat for invasive species using ecological niche models and the policy implications of range forecasts. In Keller, R. P., Lodge, D. M., Lewis, M.A. & Shogren (eds.), J.F. Bioeconomics of invasive species: Integrating ecology, economics, policy and management (pp. 6382). New York: Oxford University Press.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 19651978.CrossRefGoogle Scholar
Hijmans, R. J. & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12(12), 110.Google Scholar
Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-Niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83(7), 2027–2036.Google Scholar
Hirzel, A. H. & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45(5), 13721381.Google Scholar
Hooten, M. B., Wikle, C. K., Dorazio, R. M. & Royle, J. A. (2007). Hierarchical spatiotemporal matrix models for characterizing invasions. Biometrics, 63(2), 558567.Google Scholar
Hortal, J., Jiménez-Valverde, A., Gómez, J. F., Lobo, J. M. & Baselga, A. (2008). Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos, 117(6), 847858.Google Scholar
Huey, R. B., Gilchrist, G. W. & Hendry, A. P. (2005). Using invasive species to study evolution: Case studies with Drosophila and salmon. In Sax, D. F., Stachowicz, J. J. & Gaines (eds.), S. D. Species invasions: Insights into ecology, evolution and biogeography (pp. 139164). Sunderland, MA: Sinauer Associates.Google Scholar
Hulme, P. E. (2003). Biological invasions: Winning the science battles but losing the conservation war? Oryx, 37(2), 178193.Google Scholar
Hulme, P. E. & Weser, C. (2011). Mixed messages from multiple information sources on invasive species: A case of too much of a good thing? Diversity and Distributions, 17(6), 11521160.Google Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology, 22, 415427.Google Scholar
Inglis, G. J., Hurren, H., Oldman, J. & Haskew, R. (2006). Using habitat suitability index and particle dispersion models for early detection of marine invaders. Ecological Applications, 16(4), 13771390.Google Scholar
Jackson, S. T. & Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology, 26(Sp 4), 194200.CrossRefGoogle Scholar
Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. (2008). Not as good as they seem: The importance of concepts in species distribution modelling. Diversity and Distributions, 14(6), 885890.CrossRefGoogle Scholar
Jiménez-Valverde, A., Peterson, A., Soberón, J., et al. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 27852797.Google Scholar
Johnson, C. J. & Gillingham, M. P. (2008). Sensitivity of species-distribution models to error, bias, and model design: An application to resource selection functions for woodland caribou. Ecological Modelling, 213(2), 143155.CrossRefGoogle Scholar
Kangas, A. S. & Kangas, J. (2004). Probability, possibility and evidence: Approaches to consider risk and uncertainty in forestry decision analysis. Forest Policy and Economics, 6(2), 169188.Google Scholar
Kearney, M. (2006). Habitat, environment and niche: What are we modelling? Oikos, 115(1), 186191.Google Scholar
Kearney, M. R., Isaac, A. P. & Porter, W. P. (2014). Microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Scientific Data, 1, 140006.Google Scholar
Kearney, M., Phillips, B. L., Tracy, C. R., et al. (2008). Modelling species distributions without using species distributions: The cane toad in Australia under current and future climates. Ecography, 31(4), 423434.Google Scholar
Kearney, M. & Porter, W. P. (2004). Mapping the fundamental niche: Physiology, climate and the distribution of nocturnal lizards across Australia. Ecology, 85(11), 31193131.CrossRefGoogle Scholar
Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12(4), 334350.Google Scholar
Kearney, M. R., Wintle, B. A. & Porter, W. P. (2010). Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 3(3), 203213.Google Scholar
Keating, K. A. & Cherry, S. (2004). Use and interpretation of logistic regression in habitat selection studies. Journal of Wildlife Management, 68(4), 774789.Google Scholar
Kriticos, D. J. & Leriche, A. (2010). The effects of spatial data precision on fitting and projecting species niche models. Ecography, 33(1), 115127.Google Scholar
Kriticos, D. J., Watt, M. S., Potter, K. J. B., et al. (2011). Managing invasive weeds under climate change: Considering the current and potential future distribution of Buddleja davidii. Weed Research, 51(1), 8596.CrossRefGoogle Scholar
Kriticos, D. J., Webber, B. L., Leriche, A., et al. (2012) CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3(1), 5364.Google Scholar
Kühn, I., Bierman, S. M., Durka, W. & Klotz, S. (2006). Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytologist, 172(1), 127139.Google Scholar
Lawson, B. E., Day, M. D., Bowen, M., van Klinken, R. D. & Zalucki, M. P. (2010). The effect of data sources and quality on the predictive capacity of CLIMEX models: An assessment of Teleonemia scrupulosa and Octotoma scabripennis for the biocontrol of Lantana camara in Australia. Biological Control, 52(1), 6876.Google Scholar
Le Maitre, D. C., Thuiller, W. & Schonegevel, L. (2008). Developing an approach to defining the potential distributions of invasive plant species: A case study of Hakea species in South Africa. Global Ecology and Biogeography, 17(5), 569584.Google Scholar
Leathwick, J. R. & Austin, M. P. (2001). Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. Ecology, 82(9), 25602573.CrossRefGoogle Scholar
Leathwick, J. R., Elith, J., Chadderton, L., Rowe, D. & Hastie, T. (2008). Dispersal, disturbance, and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. Journal of Biogeography, 35(8), 14811497.Google Scholar
Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74(6), 16591673.CrossRefGoogle Scholar
Leung, B., Roura-Pascual, N., Bacher, S., et al. (2012) TEASIng apart alien species risk assessments: A framework for best practices. Ecology Letters, 15(12), 14751493.CrossRefGoogle ScholarPubMed
Leyk, S., Boesch, R. & Weibel, R. (2005). A conceptual framework for uncertainty investigation in map-based land cover change modelling. Transactions in GIS, 9(3), 291322.Google Scholar
Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33(1), 103114.Google Scholar
MacNally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models. Biodiversity and Conservation, 9(5), 665671.Google Scholar
Magarey, R. D., Fowler, G. A., Borchert, D. M., et al. (2007). NAPPFAST: An internet system for the weather-based mapping of plant pathogens. Plant Disease, 91(4), 336345.Google Scholar
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. (2002). Resource selection by animals: Statistical design and analysis for field studies, 2nd ed. Dordrecht, the Netherlands: Kluwer Academic.Google Scholar
McCarthy, M. A. & Parris, K. M. (2008). Optimal marking of threatened species to balance benefits of information with impacts of marking. Conservation Biology, 22(6), 15061512.Google Scholar
McCune, B. (2006). Non-parametric models with automatic interactions. Journal of Vegetation Science, 17(6), 819830.Google Scholar
Mellert, K. H., Fensterer, V., Küchenhoff, H., et al. (2011). Hypothesis-driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science, 22(4), 635646.Google Scholar
Merow, C., Smith, M. J., Edwards, T. C., Jr., et al. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography, 37(12), 12671281.Google Scholar
Mesgaran, M. B., Cousens, R. D. & Webber, B. L. (2014). Here be dragons: A tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Diversity and Distributions, 20(10), 11471159.Google Scholar
Moilanen, A., Wintle, B., Elith, J. & Burgman, M. (2006). Uncertainty analysis for regional-scale reserve selection. Conservation Biology, 20(6), 16881697.Google Scholar
Moisen, G. G., Freeman, E. A., Blackard, J. A., et al. (2006). Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling, 199(2), 176187.Google Scholar
Moisen, G. G., & Frescino, T. S. (2002). Comparing five modeling techniques for predicting forest characteristics. Ecological Modelling, 157(2–3), 209–25.CrossRefGoogle Scholar
Morin, X. & Lechowicz, M. J. (2008). Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biology Letters, 4(5), 573576.CrossRefGoogle ScholarPubMed
Morin, X. & Thuiller, W. (2009). Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90(5), 13011313.Google Scholar
Nix, H. A. (1986). A biogeographic analysis of Australian elapid snakes. In Longmore (ed.), N. Atlas of elapid snakes of Australia (pp. 415). Canberra, Australia: Australian Government Publishing Service.Google Scholar
Olfert, O., Hallett, R., Weiss, R. M., Soroka, J. & Goodfellow, S. (2006). Potential distribution and relative abundance of swede midge, Contarinia nasturtii, an invasive pest in Canada. Entomologia Experimentalis et Applicata, 120(3), 221228.CrossRefGoogle Scholar
Ovaskainen, O., Hottola, J. & Siitonen, J. (2010). Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91(9), 25142521.Google Scholar
Pearce, J. & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3), 225245.CrossRefGoogle Scholar
Pearson, G. P., Thuiller, W., Araujo, M. B., et al. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33(10), 17041711.Google Scholar
Pearson, R. G. (2007). Species’ distribution modeling for conservation educators and practitioners. New York: American Museum of Natural History. Available from http://ncep.amnh.org.Google Scholar
Peterson, A. T. (2003). Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78(4), 419433.Google Scholar
Peterson, A. T. (2006). Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 5972.CrossRefGoogle Scholar
Peterson, A. T. & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling: An example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17(1), 135144.Google Scholar
Peterson, A. T., Soberón, J., Pearson, R. G., et al. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231259.Google Scholar
Phillips, S. J., Dudík, M., Elith, J., et al. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19(1), 181197.Google Scholar
Phillips, S. J. & Elith, J. (2011). Logistic methods for resource selection functions and presence-only species distribution models. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (pp. 13841389). San Francisco, CA: AAAI Press.Google Scholar
Pollock, L. J., Tingley, R., Morris, W. K., et al. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5(5), 397406.CrossRefGoogle Scholar
Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J. & Ramankutty, N. (2002). Physiology on a landscape scale: Plant-animal interactions. Integrative and Comparative Biology, 42(3), 431453.Google Scholar
Potts, J. M. & Elith, J. (2006). Comparing species abundance models. Ecological Modelling, 199(2), 153163.CrossRefGoogle Scholar
Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3(4), 349361.CrossRefGoogle Scholar
Randin, C. F., Dirnböck, T., Dullinger, S., et al. (2006). Are niche-based species distribution models transferable in space? Journal of Biogeography, 33(10), 16891703.Google Scholar
Rangel, T. F. L. V. B., Diniz-Filho, J. A. F. & Bini, L. M. (2006). Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 15(4), 321327.Google Scholar
Ray, N. & Burgman, M. A. (2006). Subjective uncertainties in habitat suitability maps. Ecological Modelling, 195(3–4), 172186.Google Scholar
Reddy, S. & Dávalos, L. M. (2003). Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography, 30(11), 17191727.Google Scholar
Renner, I. W., Elith, J., Baddeley, A., et al. (2015). Point process models for presence-only analysis. Methods in Ecology and Evolution, 6(4), 366379.CrossRefGoogle Scholar
Reusser, D. A. & LeeII, H. (2008). Predictions for an invaded world: A strategy to predict the distribution of native and non-indigenous species at multiple scales. ICES Journal of Marine Science, 65(5), 742745.CrossRefGoogle Scholar
Richardson, D. M. & Thuiller, W. (2007). Home away from home – objective mapping of high-risk source areas for plant introductions. Diversity and Distributions, 13(3), 299312.Google Scholar
Robertson, M. P., Cumming, G. S. & Erasmus, B. F. N. (2010). Getting the most out of atlas data. Diversity and Distributions, 16(3), 363375.CrossRefGoogle Scholar
Rocchini, D., McGlinn, D., Ricotta, C., Neteler, M. & Wohlgemuth, T. (2011). Landscape complexity and spatial scale influence the relationship between remotely sensed spectral diversity and survey-based plant species richness. Journal of Vegetation Science, 22(4), 688698.Google Scholar
Rodda, G. H., Jarnevich, C. S. & Reed, R. N. (2009). What parts of the US mainland are climatically suitable for invasive alien pythons spreading from Everglades National Park? Biological Invasions, 11(2), 241252.CrossRefGoogle Scholar
Rodda, G. H., Jarnevich, C. S. & Reed, R. N. (2011). Challenges in identifying sites climatically matched to the native ranges of animal invaders. PloS ONE, 6(2), e14670.Google Scholar
Rödder, D. & Lötters, S. (2010). Explanative power of variables used in species distribution modelling: An issue of general model transferability or niche shift in the invasive greenhouse frog (Eleutherodactylus planirostris). Naturwissenschaften, 97(9), 781796.Google Scholar
Rouget, M. & Richardson, D. M. (2003). Inferring process from pattern in plant invasions: A semimechanistic model incorporating propagule pressure and environmental factors. American Naturalist, 162(6), 713724.CrossRefGoogle ScholarPubMed
Roura-Pascual, N., Brotons, L., Peterson, A. T. & Thuiller, W. (2009). Consensual predictions of potential distributional areas for invasive species: A case study of Argentine ants in the Iberian Peninsula. Biological Invasions, 11(4), 10171031.Google Scholar
Rout, T. M., Moore, J. L. & McCarthy, M. A. (2014). Prevent, search or destroy? A partially observable model for invasive species management. Journal of Applied Ecology, 51(3), 804813.Google Scholar
Rykiel, E. J., Jr. (1996). Testing ecological models: The meaning of validation. Ecological Modelling, 90(3), 229244.Google Scholar
Schröder, B. (2008). Challenges of species distribution modeling belowground. Journal of Plant Nutrition and Soil Science, 171(3), 325337.Google Scholar
Schulman, L., Toivonen, T. & Ruokolainen, K. (2007). Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation. Journal of Biogeography, 34(8), 13881399.Google Scholar
Soberón, J. & Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the USA, 106(Suppl. 2), 1964419650.CrossRefGoogle ScholarPubMed
Steiner, F. M., Schlick-Steiner, B. C., VanDerWal, J., et al. (2008). Combined modelling of distribution and niche in invasion biology: A case study of two invasive Tetramorium ant species. Diversity and Distributions, 14(3), 538545.Google Scholar
Stohlgren, T. J., Ma, P., Kumar, S., et al. (2010). Ensemble habitat mapping of invasive plant species. Risk Analysis, 30(2), 224235.Google Scholar
Sutherst, R. W. (2003). Prediction of species geographical ranges. Journal of Biogeography, 30(6), 805816.Google Scholar
Sutherst, R. W. & Maywald, G. F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment, 13(3–4), 281299.Google Scholar
Sutherst, R. W., Maywald, G. F. & Kriticos, D. J. (2007). Climex version 3: User’s guide. South Yarra, Australia: Hearne Scientific Software.Google Scholar
Taylor, S. & Kumar, L. (2012). Sensitivity analysis of CLIMEX parameters in modelling potential distribution of Lantana camara L. PloS ONE, 7(7), e40969.Google Scholar
Thomas, C. D. & Ohlemüller, R. (2010). Climate change and species’ distributions: an alien future? In Perrings, C., Mooney, H. & Williamson, M. (eds.), Bioinvasions and globalization: Ecology, economics, management and policy (pp. 1929). Oxford: Oxford University Press.Google Scholar
Thuiller, W. (2003). BIOMOD – Optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10), 13531362.Google Scholar
Thuiller, W., Albert, C., Araújo, M. B., et al. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9(3–4), 137152.Google Scholar
Thuiller, W., Richardson, D. M., Pysek, P., et al. (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11(12), 22342250.Google Scholar
Tyberghein, L., Verbruggen, H., Pauly, K., et al. (2012). Bio-ORACLE: A global environmental dataset for marine species distribution modeling. Global Ecology and Biogeography, 21(2), 272281.Google Scholar
Václavík, T. & Meentemeyer, R. K. (2009). Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling, 220(23), 32483258.Google Scholar
van Klinken, R. D., Lawson, B. E. & Zalucki, M. P. (2009). Predicting invasions in Australia by a Neotropical shrub under climate change: The challenge of novel climates and parameter estimation. Global Ecology and Biogeography, 18(6), 688700.Google Scholar
Van Niel, K. P. & Austin, M. P. (2007). Predictive vegetation modeling for conservation: Impact of error propagation from digital elevation data. Ecological Applications, 17(1), 266280.Google Scholar
Venette, R. C., Kriticos, D. J., Magarey, R. D., et al. (2010). Pest risk maps for invasive alien species: A roadmap for improvement. BioScience, 60(5), 349362.Google Scholar
Ward, G., Hastie, T., Barry, S. C., Elith, J. & Leathwick, J. R. (2009). Presence-only data and the EM algorithm. Biometrics, 65(2), 554563.Google Scholar
Warton, D. I., Renner, I. W. & Ramp, D. (2013). Model-based control of observer bias for the analysis of presence-only data in ecology. PloS ONE, 8(11), e79168.Google Scholar
Warton, D. I. & Shepherd, L. C. (2010). Poisson point process models solve the ‘pseudo-absence problem’ for presence-only data in ecology. The Annals of Applied Statistics, 4(3), 13831402.Google Scholar
Williams, J. W., Jackson, S. T. & Kutzbac, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the USA, 104(14), 57385742.Google Scholar
Williams, N. S. G., Hahs, A. K. & Morgan, J. W. (2008). A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation. Ecological Applications, 18(2), 347359.Google Scholar
Wintle, B. A., McCarthy, M. A., Parris, K. M. & Burgman, M. A. (2004). Precision and bias of methods for estimating point survey detection probabilities. Ecological Applications, 14(3), 703712.Google Scholar
Wolmarans, R., Robertson, M. P. & Van Rensburg, B. J. (2010). Predicting invasive alien plant distributions: How geographical bias in occurrence records influences model performance. Journal of Biogeography, 37(9), 17971810.Google Scholar
Woodbury, P. B. & Weinstein, D. A. (2008). Availability of spatial data. In Forest Encyclopedia Network. Available from www.forestencyclopedia.net/p/p3233Google Scholar
Wu, S.-H., Rejmanek, M., Grotkopp, E. & DiTomaso, J. M. (2005). Herbarium records, actual distribution, and critical attributes of invasive plants: genus Crotalaria in Taiwan. Taxon, 54(1), 133138.Google Scholar
Yemshanov, D., Koch, F. H., Ben-Haim, Y. & Smith, W. D. (2010). Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest. Risk Analysis, 30(2), 261276.Google Scholar
Ysebaert, T., Meire, P., Herman, P. M. J. & Verbeek, H. (2002). Macrobenthic species response surfaces along estuarine gradients: Prediction by logistic regression. Marine Ecology Progress Series, 225, 7995.Google Scholar
Zimmermann, N., Edwards, T., Moisen, G., Frescino, T. & Blackard, J. (2007). Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. Journal of Applied Ecology, 44(5), 10571067.Google Scholar
Zimmermann, N. E., Yoccoz, N. G., Edwards, T. C., et al. (2009). Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the USA, 106(Suppl. 2), 1972319728.Google Scholar
Zurell, D., Elith, J. & Schröder, B. (2012). Predicting to new environments: Tools for visualizing model behaviour and impacts on mapped distributions. Diversity and Distributions, 18(6), 628634.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×