Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-14T03:29:54.477Z Has data issue: false hasContentIssue false

2 - Cloud Particles and Their Representation in Cloud Models

Published online by Cambridge University Press:  22 August 2018

Alexander P. Khain
Affiliation:
Hebrew University of Jerusalem
Mark Pinsky
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Chapter 2 gives general characteristics of cloud particles (atmospheric aerosols, cloud drops and ice particles), their location in clouds, physical characteristics and their representation in cloud models. The concept of equivalent particles is introduced. Methods implemented in cloud models for representation of size distribution of cloud particles in cloud models are described and illustrated with examples. Detailed tables present characteristics of Gamma, lognormal and exponential distributions used for parameterization of cloud particles distribution.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P., Longlo, K.M., and Silva-Dias, M.A.F., 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342.Google Scholar
Arnott, W.P., Dong, Y.Y., and Hallett, J., 1994: Role of small ice crystals in radiative properties of cirrus: A case study, FIRE II, November 22, 1991. J. Geophys. Res., 99, 13711381.Google Scholar
Bailey, M.P., and Hallett, J., 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS 2, and other field studies. J. Atmos. Sci., 66, 28882899.CrossRefGoogle Scholar
Baker, B., Mo, Q., Lawson, R., O’Connor, D., and Korolev, A., 2009: Drop size distributions and the lack of small drops in RICO rain shafts. J. Appl. Meteorol. Clim., 48, 616623.Google Scholar
Bates, T.S., Coffman, D.J., Covert, D.S., and Quinn, P.K., 2002: Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE-1, ACE-2 and Aerosols99. J. Geophys. Res., 107, 8026.Google Scholar
Berry, E.X., and Reinhardt, R.J., 1974: An analysis of cloud drop growth by collection: Part 1. Double distributions. J. Atmos. Sci., 31, 18141824.2.0.CO;2>CrossRefGoogle Scholar
Bleck, R., 1970: A fast approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 51655171.Google Scholar
Bott, A., 2000: A numerical model of the cloud-topped planetary boundary-layer: Influence of the physico-chemical properties of aerosol particles on the effective radius of stratiform clouds. Atmos. Res., 53, 1527.Google Scholar
Brandes, E. A., Zhang, G., and Vivekanandan, J., 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteorol., 41, 674685.Google Scholar
Corrigan, C.E., Roberts, G.C., Ramana, M.V., Kim, D., and Ramanathan, V., 2008: Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmos. Chem. Phys., 8, 737747.CrossRefGoogle Scholar
Danielsen, E.F., Bleck, R., and Morris, D.A., 1972: Hail growth in a cumulus model. J. Atmos. Sci., 29, 135155.2.0.CO;2>CrossRefGoogle Scholar
El-Magd, A., Chandrasekhar, V., Bringi, V.N., and Strapp, W., 2000: Multiparameter Radar and in situ aircraft observation of graupel and hail. IEEE Trans. on Geosciences and Remote Sensing, 38, 570577.CrossRefGoogle Scholar
Emanuel, K.A., 1994: Atmospheric Convection. Oxford University Press p. 580.CrossRefGoogle Scholar
Enukashvily, I.M., 1980: A numerical method for integrating the kinetic equation of coalescence and breakup of cloud droplets. J. Atmos. Sci., 61, 25212534.Google Scholar
Fan, J., Rosenfeld, D., Yang, Y., Zhao, C., Leung, L.R., and Li, Z., 2015: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys. Res. Lett., 42 (14), 60666075.CrossRefGoogle Scholar
Feingold, G., Stevens, B., Cotton, W.R., and Walko, R.L., 1994: An explicit cloud microphysical/LES model designed to simulate the Twomey effect. Atmos. Res., 33, 207233.Google Scholar
Ferrier, B.S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.Google Scholar
Field, P.R., Heymsfield, A. J., and Bansemer, A.B., 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365.Google Scholar
Field, P.R., Hogan, R.J., Brown, P.R.A., Illingworth, A.J., Choularton, T.W., and Cotton, R.J., 2005: Parameterization of ice particle size distribution for mid-latitude stratiform cloud. Q. J. Royal Meteorol. Soc., 131, 19972017.Google Scholar
Flossmann, A.I., Hall, W.D., and Pruppacher, H.R., 1985: A theoretical study of the wet removal of atmospheric pollutants. Part 1: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42, 583606.Google Scholar
Flossmann, A.I., and Pruppacher, H.R., 1988: A theoretical study of the wet removal of atmospheric pollutants. Part III: The uptake, redistribution, and deposition of (NH4)2SO4 particles by a convective cloud using a two-dimensional cloud dynamics model. J. Atmos. Sci., 45, 18571871.Google Scholar
Freud, E., Rosenfeld, D., Andreae, M.O., Costa, A.A., and Artaxo, P., 2008: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmos. Chem. Phys., 8, 16611675.Google Scholar
Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53, 16491662.Google Scholar
Ghan, S.J., Abdul-Razzak, H., Nenes, A., Ming, Y., Liu, X., Ovchinnikov, M., Shipway, B., Meskhidze, N., Xu, J., and Shi, X., 2011: Droplet nucleation: Physically based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001, doi:10.1029/2011MS000074.Google Scholar
Hall, W.D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507.Google Scholar
Hallett, J., and Mossop, S.C., 1974: Production of secondary ice crystals during the riming process. Nature, 249, 2628.Google Scholar
Heymsfield, A., Schmitt, C., and Bansemer, A., 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0 to −86 C. J. Atmos. Sci., 70, 41234154.CrossRefGoogle Scholar
Heymsfield, A.J., Bansemer, A., Heymsfield, G., and Fierro, A., 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20 to −60C. J. Atmos. Sci., 66, 35303562.Google Scholar
Heymsfield, A.J., Bansemer, A., and Twohy, C.H., 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067.Google Scholar
Heymsfield, A.J. and Platt, C.M.R., 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41, 846855.Google Scholar
Heymsfield, G.M., Tian, L., Heymsfield, A.J., Li, L., and Guimond, S., 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308.CrossRefGoogle Scholar
Hobbs, P., 1993: Aerosol-cloud-climate interactions, edited by Hobbs, Peter, Academic Press, p. 237.Google Scholar
Hobbs, P.V., Bowdle, D.A., and Radke, L.F., 1985: Particles in the lower troposphere over the High Plains of the United States. 1: Size distributions, elemental compositions and morphologies. J. Clim. Appl. Meteorol., 24, 13441356.Google Scholar
Ito, T., 1982: On the size distribution of submicron aerosols in the Antarctic atmosphere. Antarctic Record, 76, 119.Google Scholar
Jaenicke, R., 1988: Properties of atmospheric aerosols, in Meteorology: Properties of the Air, vol. V/4b, edited by Fischer, G., Springer-Verlag, New York, pp. 405428.Google Scholar
Jaenicke, R., 1993: Chapter 1: Tropospheric Aerosols. Int. Geophysics, 54, 131 in book Aerosol–Cloud–Climate Interactions. Edited by Peter V.Hobbs. Elsevier.Google Scholar
Jaenicke, R., Dreiling, V., Lehmann, E., Koutsenoguii, P. K., and Stingl, J., 1992: Condensation nuclei at the German Antarctic Station “Georg von Neumayer.” Tellus, 44B, 311317.CrossRefGoogle Scholar
Jaenicke, R., and Schutz, L., 1982: Arctic Aerosols in Surface Air. J. Hungarian Meteorol. Service, 86, 235241.Google Scholar
Jorgensen, D.P., and LeMone, M.A., 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640.Google Scholar
Jorgensen, D.P., Zipser, E.J., and. LeMone, M.A., 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856.Google Scholar
Junge, C.E., 1955: The size distribution and aging of natural aerosol as determined from electrical and optical data on the atmosphere. J. Meteorol., 12, 1325.2.0.CO;2>CrossRefGoogle Scholar
Junge, C.E., 1969: Comments on “Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distributions.” J. Atmos. Sci., 26, 603608.2.0.CO;2>CrossRefGoogle Scholar
Khain, A.P., Arkhipov, V., Pinsky, M., Feldman, Y., and Ryabov, Ya, 2004a: Rain enhancement and fog elimination by seeding with charged droplets. Part I: Theory and numerical simulations. J. Appl. Met., 43, 15131529.Google Scholar
Khain, A.P, Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V., 2004b: Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model Part 1: Model description. J. Atmos. Sci., 61, 29632982.Google Scholar
Khain, A.P., Rosenfeld, D., Pokrovsky, A., Blahak, U., and Ryzhkov, A., 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, (Issue 1), 129146.Google Scholar
Koch, W., 1996. Solarer Strahlungstransport in Arktischem Cirrus. PhD Thesis. GKSS 96/E/60, 99pp.Google Scholar
Korolev, A.V., 1994: A study of bimodal droplet size distributions in stratiform clouds. Atmos. Res., 32, 143170.Google Scholar
Korolev, A.V., Isaac, G.A., and Hallett, J., 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302.Google Scholar
Korolev, A.V., Isaac, G.A., and Hallett, J., 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteorol. Soc., 126, 28732902.Google Scholar
Kostinski, A., and Jameson, A., 1999: Fluctuation properties of precipitation. Part III: On the ubiquity and emergence of the exponential drop size spectra. J. Atmos. Sci., 56, 111121.Google Scholar
Lawson, R.P., Baker, B., Pilson, B., and Mo, Q., 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 31863203.Google Scholar
Lawson, R.P., Stewart, R.E., and Angus, L.J., 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229.2.0.CO;2>CrossRefGoogle Scholar
Levin, Z., and Cotton, W.R., 2009: Aerosol pollution impact on precipitation: A scientific review. Springer, p. 386.CrossRefGoogle Scholar
Levin, Z., Ganor, E., and Gladstain, V., 1996: The effects of desert particles coated with sulfate on rain formation in the Eastern Mediterranean. J. Appl. Meteorol., 35, 15111523.Google Scholar
Lewis, E.R., and Schwartz, S.E., 2004: Sea salt aerosol production. Mechanisms, methods, measurements, and models. American Geophysical Union.Google Scholar
Li, S.M., and Winchester, J.W., 1989: Resolution of ionic components of late winter Arctic aerosols. Atmospheric Environment, 23, 23872399.Google Scholar
Liu, P.C. Zhao, Zhang, Q., Deng, C., Huang, M., and Tie, X., 2009: Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus, 61B, 756767.Google Scholar
Low, T.B., and List, R., 1982: Collision, coalescence and breakup of raindrops, Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 16071618.Google Scholar
Lynn, B.H., Khain, A.P., Bao, J.W., Michelson, S.A., Yuan, T., Kelman, G., Rosenfeld, D., Shpund, J., and Benmoshe, N., 2016: The sensitivity of hurricane Irene to aerosols and ocean coupling: Simulations with WRF spectral bin microphysics. J. Atmos. Sci., 73, 467486.Google Scholar
Magaritz, L., Pinsky, M., Krasnov, O., and Khain, A., 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781805.CrossRefGoogle Scholar
Magono, C., and Lee, C.W., 1966: Meteorological classification of natural snow crystals, J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.Google Scholar
Maki, M., Keenan, T., Sasaki, Y., and Nakamura, K., 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteorol., 40, 13931412.Google Scholar
Marshall, J.S. and Palmer, W. Mc K, 1948: The distribution of raindrops with size. J. Met., 5, 165166.Google Scholar
Martin, G.M., Johnson, D.W., and Spice, A., 1994: The measurements and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842.2.0.CO;2>CrossRefGoogle Scholar
Martner, B., Yumer, S., White, A., Matrosov, S., Kingsmill, D., and Ralph, F., 2008: Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. J. Hydrometeorology, 9, 408425.Google Scholar
Mason, B.J., 1971: The physics of clouds (2nd edition). Oxford University Press, p. 544.Google Scholar
Mazin, I.P., and Shmeter, S.M., 1983: Clouds, their Structure and Formation. Gidrometizdat, p. 279.Google Scholar
Milbrandt, J.A, and McTaggart-Cowan, R., 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 39313948.Google Scholar
Mitchell, D.L., Chai, S.K., Liu, Y., Heymsfield, A.J., and Dong, Y., 1996: Modeling Cirrus Clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53, 29522966.Google Scholar
Mitchell, D.L., and Heymsfield, A.J., 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644.Google Scholar
Noll, K.E., and Pilat, M.J., 1971: Size distribution of atmospheric giant particles. Atmos. Environment, 5, 527540.Google Scholar
Ochs, H.T., and Yao, C.S., 1978: Moment conserving techniques for warm cloud microphysical computations, Part 1: Numerical techniques. J. Atmos. Sci., 35, 19471958.Google Scholar
Pinsky, M., and Khain, A., 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation. Quart. J. Roy. Meteorol. Soc., 128, 501533.Google Scholar
Pinsky, M., Khain, A., Magaritz, L., and Sterkin, A., 2008: Simulation of droplet size distributions and drizzle formation using a new trajectory ensemble model of cloud topped boundary layer. Part 1: Model description and first results in non-mixing limit. J. Atmos. Sci., 65, 20642086.CrossRefGoogle Scholar
Pinsky, M., Mazin, I.P., Korolev, A., and Khain, A., 2014: Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra J. Geophys. Res. Atmos., 119, 1287212887,Google Scholar
Politovich, M.K., 1993: A study of the broadening of droplet size distribution in cumuli. J. Atmos. Sci., 50, 22302244.Google Scholar
Prabha, T., Khain, A.P., Goswami, B.N., Pandithurai, G., Maheshkumar, R.S., and Kulkarni, J.R., 2011: Microphysics of pre-monsoon and monsoon clouds as seen from in-situ measurements during CAIPEEX. J. Atmos. Sci., 68, 18821901.Google Scholar
Pruppacher, H.R., and Klett, J.D., 1997: Microphysics of clouds and precipitation, 2nd edition. Oxford: Kluwer Academic Publishers.Google Scholar
Reisin, T., Levin, Z., and Tzivion, S., 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part 1: Description of the model. J. Atmos. Sci., 53, 497519.Google Scholar
Respondek, P.S., Flossmann, A.I., Alheit, R.R., and Pruppacher, H.R., 1995: A theoretical study of the wet removal of atmospheric pollutants: Part V. The uptake, redistribution, and deposition of (NH4)2SO4 by a convective cloud containing ice. J. Atmos. Sci., 52, 21212132.Google Scholar
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M.O., 2006: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys., 6, 471491.Google Scholar
Rogers, R.R, and Yau, M.K., 1996: Short Course in Cloud Physics, Butterworth-Heinemann, p. 304.Google Scholar
Rosenfeld, D., Andreae, M.O., Asmi, A., Chin, M., Leeuw, G., Donovan, D.P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K.S., Suni, T., Wagner, T., Wild, M., and Quaas, J., 2014: Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys., 52 (4), 750808.Google Scholar
Rosenfeld, D., and Gutman, G., 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259283.Google Scholar
Rosenfeld, D., and Woodley, W.L., 2000: Deep convective clouds with sustained highly supercooled liquid water until −37.5°C. Nature, 405, 440442.Google Scholar
Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A., 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Met. Clim., 50, 873894.CrossRefGoogle Scholar
Saleeby, S.M., and Cotton, W.R., 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J Appl. Meteorol., 43, 182195.Google Scholar
Sánchez, J.L., Gil-Robles, B., Dessens, J., Martin, E., Lopez, L., Marcos, J.L., Berthet, C., Fernández, J.T., and García-Ortega, E., 2009: Characterization of hailstone size spectra in hailpad networks in France, Spain, and Argentina. Atmos. Res. 93, 641654.Google Scholar
Seifert, A., and Beheng, K., 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys., 92, 4566.Google Scholar
Sekhon, R.S., and Srivastava, R.C., 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299307.Google Scholar
Shaw, G.E., 1986: On physical properties of aerosols at Ross Island, Antarctica. J. Aerosol Sci., 17, 937945.Google Scholar
Stewart, R.E, 1991: Canadian Atlantic Storms Program: Progress and plans of the meteorological component. Bull. Amer. Meteorol. Soc., 72, 364371.2.0.CO;2>CrossRefGoogle Scholar
Stewart, R.E., and Crawford, R.W., 1995: Some characteristics of the precipitation formed within winter storms over eastern Newfoundland. Atmos. Res., 36, 1737.Google Scholar
Straka, J.M., 2009: Cloud and Precipitation microphysics. Principles and parameterizations. Cambridge: Cambridge University Press.Google Scholar
Takahashi, T., 2006: Precipitation mechanisms in East Asian monsoon: Videosonde study. J. Geophys. Res., 111, D09202.Google Scholar
Thurai, M., Szakall, M., Bringi, V.N., Beard, K.V., Mitra, S.K., and Borrmann, S., 2009: Drop shapes and axis ratio distributions: Comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Ocean Tech., 26, 14271432.Google Scholar
Tian, L., Heymsfield, G.M., Heymsfield, A.J., Bansemer, A., Li, L., Twohy, C.H., and Srivastava, R.C., 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216.Google Scholar
Twohy, C.H., Petters, M.D., Snider, J.R., Stevens, B., Tahnk, W., Wetzel, M., Russell, L., and Burnet, F., 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path and radiative impact, J. Geophys. Res., 110, D08203, doi: 10.1029/2004JD005116.Google Scholar
Tzivion, S., Feingold, G., and Levin, Z., 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149.Google Scholar
Tzivion, S., Feingold, G., and Levin, Z., 1989: The evolution of raindrop spectra. Part 2. Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123327.Google Scholar
VanZanten, M.C., Stevens, B., Vali, G., and Lenschow, D.H., 2005: Observations in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106.Google Scholar
Van den Heever, S.C., Carrió, G.G., Cotton, W.R., Demott, P.J., and Prenni, A.J., 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.CrossRefGoogle Scholar
Wang, P.K., 1997: Characterization of ice crystals in clouds by simple mathematical expressions based on successive modification of simple shapes. J. Atmos. Sci., 54, 20352041.Google Scholar
Warner, J., 1969: The microstructure of cumulus clouds. Part 1. General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059.Google Scholar
Whitby, K.T., 1973: On the multimodal nature of atmospheric aerosol size distributions. \/lll-th Int. Conference/. on nucleation., Leningrad, U.S.S.R.Google Scholar
Willoughby, H.E., Jorgensen, D.P., Black, R.A., and Rosenthal, S.L., 1985: Project storm-fury: A scientific chronicle, 1962–1983. Bull Amer. Met. Soc., 66, 505514.Google Scholar
Yum, S.S., and Hudson, J.G., 2002: Maritime/continental microphysical contrasts in stratus. Tellus, Series B, 54, 6173.Google Scholar
Yuter, S.E., Kingsmill, D., Nance, L.B., and Löffler-Mang, M., 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteorol. Climatol., 45, 14501464.Google Scholar
Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M.C., Gelencser, A., Kiss, G., Krivacsy, Z., Molnar, A., Meszaros, E., Hansson, H.C., Rosman, K., and Zebuhr, Y., 1999: Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmos. Environ. 33, 27332743.Google Scholar
Zhang, Y., Macke, A., and Albers, F., 1999: Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing. Atmos. Res. 52, 5975.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×