Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-21T19:11:25.376Z Has data issue: false hasContentIssue false

14 - Uropathogenic bacteria

from Part IV - Exploitation of host niches by pathogenic bacteria: mechanisms and consequences

Published online by Cambridge University Press:  12 August 2009

Luce Landraud
Affiliation:
Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France
René Clément
Affiliation:
Unité INSERM, Faculté de Médecin, Nice, France
Patrice Boquet
Affiliation:
Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

Urinary tract infections (UTI) are among the most common human bacterial infections. The prevalent pathogens are the uropathogenic Escherichia coli (UPEC) strains. A great deal of information concerning the genetic, virulence, and innate immune host responses against those bacteria have been obtained. Furthermore, the knowledge of uroepithelium cell biology and physiology, in particular at the level of the urinary bladder, has made considerable progress since 1995, improving our understanding of the strategies used by UPEC to colonize and invade this tissue.

UTIs account for significant morbidity and high medical costs. In 1997, the National Ambulatory Medical Care Survey and the National Hospital Medical Care Survey Report estimated that UTIs in the USA result in nearly seven million doctor visits per year, excluding visits to hospital emergency departments. The overall costs associated with UTIs have been estimated to reach upwards of two billion US dollars a year (Foxman, 2002). Moreover, nosocomial acquired urinary tract infections (NAUTIs) account for up to 40% of all hospital-acquired infections in European countries and represent the most frequent nosocomial infection (Eriksen et al., 2004; Johansen, 2004; Zotti et al., 2004). NAUTIs, which are frequently associated with medical procedures (the most important risk factor being an indwelling catheter), may result in significant acute morbidity, medical complications, and legal issues (Johansen, 2004). Moreover, one of the main concerns with UTIs is that they are frequently sources of recurrent infections.

The severity of UTIs depends on the spread of the infection.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 400 - 422
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akira, S. and Takeda, K. (2004). Toll-like receptor signaling. Nat. Rev. Immunol. 4, 499–511.CrossRefGoogle Scholar
Anderson, G. G., Martin, S. M., and Hultgren, S. J. (2004). Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect. 6, 1095–1101.CrossRefGoogle ScholarPubMed
Anderson, J. M., Italie, C. M., and Fanning, A. S. (2004). Setting up a selective barrier at the apical junction complex. Curr. Opin. Cell Biol. 16, 140–145.CrossRefGoogle ScholarPubMed
Apodaca, G. (2004). The uroepithelium: not just a passive barrier. Traffic 5, 117–128.CrossRefGoogle Scholar
Arbibe, L., Mira, J. P., Teusch, N., et al. (2000). Toll-like receptor 2-mediated NF-kappa B activation requires a Rac-1 dependent pathway. Nat. Immunol. 1, 533–540.CrossRefGoogle Scholar
Backhed, F., Alsen, B., Roche, N., et al. (2002). Identification of target tissue glycosphingolipid receptors for uropathogenic F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J. Biol. Chem. 277, 18 198–18 205.CrossRefGoogle ScholarPubMed
Bakas, L., Viega, M. P., Soloaga, H., Ostolaza, H., and. Goni, F. M. (1998). Calcium-dependent conformation of the E. coli alpha-hemolysin: implications for the mechanism of membrane insertion and lysis. Biochim. Biophys. Acta. 1368, 225–234.CrossRefGoogle Scholar
Blum, G., Falbo, V., Caprioli, A., and Hacker, J. (1995). Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol. Lett. 126, 189–195.Google ScholarPubMed
Bonacorsi, S. P., Clermont, O., Tinsley, C., et al. (2000). Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect. Immun. 68, 2096–2101.CrossRefGoogle ScholarPubMed
Boquet, P. (2001). The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39, 1673–1680.CrossRefGoogle ScholarPubMed
Boquet, P. and Lemichez, E. (2003). Bacterial virulence factors targeting RhoGTPases: parasitism or symbiosis. Trends Cell Biol. 13, 238–246.CrossRefGoogle ScholarPubMed
Boyer, L., Travaglione, S., Falzano, L., et al. (2004). Rac GTPase instructs nuclear factor-kB activation by conveying the SCF complex and IkBα to the ruffling membranes. Mol. Cell Biol. 15, 1124–1133.CrossRefGoogle Scholar
Caprioli, A., Falbo, V., Roda, L. G., Ruggeri, F. M., and Zona, C. (1983). Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect. Immun. 39, 1300–1306.Google ScholarPubMed
Choudhury, D., Thompson, A., Stojanoff, V., et al. (1999). X-ray structure of the FimC–FimH chaperone–adhesin complex from uropathogenic Escherichia coli. Science 285, 1061–1066.CrossRefGoogle ScholarPubMed
Chung, J. W., Hong, S. J., Kim, K. J., et al. (2003). The 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J. Biol. Chem. 278, 16 857–16 862.CrossRefGoogle ScholarPubMed
Connell, H., Hedlund, M., Agace, W., and Svanborg, C. (1997). Bacterial attachment to uro-epithelial cells: mechanisms and consequences. Adv. Dent. Res. 11, 50–58.CrossRefGoogle ScholarPubMed
Contamin, S., Galmiche, A., Doye, A., et al. (2000). The p21-Rho-activating toxin cytotoxic necrotizing factor1 is endocytosed by clathrin-independent mechanism and enters the cytosol by an acidic dependent membrane translocation step. Mol. Biol. Cell 11, 1775–1787.CrossRefGoogle Scholar
Dobrindt, U., Blum-Oehler, G., Nagy, G., et al. (2002). Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect. Immun. 70, 6365–6372.CrossRefGoogle Scholar
Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J. (2004). Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2, 414–424.CrossRefGoogle ScholarPubMed
Donnenberg, M. S. and Welch, R. A. (1996). Virulence determinants in uropathogenic E. coli. In Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, ed. Mobley, H. T. L. and Warren, J.. Washington, DC: American Society of Microbiology, pp. 135–174.Google Scholar
Doye, A., Mettouchi, A., Bossis, G., et al. (2002). CNF1 exploits the ubiquitin-proteasome machinery to restrict RhoGTPase activation for bacterial host cell invasion. Cell 111, 553–564.CrossRefGoogle Scholar
Duncan, M. J., Li, G., Shin, J. S., Carson, J. L., and Abdaham, S. N. (2004). Bacterial penetration of bladder epithelium through lipid rafts. J. Biol. Chem. 279, 18 944–18 951.CrossRefGoogle ScholarPubMed
Dussurget, O., Pizarra-Cerda, J., and Cossart, P. (2004). Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58, 587–610.CrossRefGoogle ScholarPubMed
Eriksen, H. M., Iversen, B. J., and Aavitsland, P. (2004). Prevalence of nosocomial infections and use of antibiotics in long-term care facilities in Norway, 2002 and 2003. J. Hosp. Infect. 57, 316–320.CrossRefGoogle ScholarPubMed
Falbo, V., Pace, T., Picci, L., Pizzi, E., and Caprioli, A. (1993). Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect. Immun. 61, 4909–4914.Google ScholarPubMed
Falzano, L., Fiorentini, C., Donelli, G., et al. (1993). Induction of a phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol. Microbiol. 9, 1247–1254.CrossRefGoogle ScholarPubMed
Falzano, L., Quaranta, M. G., Travaglione, S., et al. (2003). Cytotoxic necrotizing factor 1 enhances reactive oxygen species-dependent transcription and secretion of proinflammatory cytokines in human uroepithelial cells. Infect. Immun. 71, 4178–4181.CrossRefGoogle ScholarPubMed
Felmlee, T., Pelett, S., and Welch, R. A. (1985). Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J. Bacteriol. 163, 94–105.Google ScholarPubMed
Fiorentini, C., Arancia, G., Caprioli, A., et al. (1988). Cytoskeletal changes induced in HEp-2 cells by the cytotoxic necrotizing factor 1 of Escherichia coli. Toxicon 26, 1047–1056.CrossRefGoogle ScholarPubMed
Fiorentini, C., Matarrese, P., Straface, E., et al. (1998). Rho-dependent cell spreading activated by E. coli cytotoxic necrotizing factor 1 hinders apoptosis in epithelial cells. Cell Death Diff. 5, 921–929.CrossRefGoogle ScholarPubMed
Flatau, G., Lemichez, E., Gauthier, M., et al. (1997). Toxin-induced activation of the G-protein p21 Rho by deamidation of glutamine. Nature 347, 729–733.CrossRefGoogle Scholar
Foxman, B. (2002). Epidemiology of urinary tract infections: incidence, morbidity and economic costs. Am. J. Med. 113, 5–13.CrossRefGoogle ScholarPubMed
Freudeus, B., Wachtler, C., Hedlund, M., et al. (2001). Escherichia coli P fimbriae utilize the toll-like receptor 4 pathway for cell activation. Mol. Microbiol. 40, 37–51.CrossRefGoogle Scholar
Garcia, M. L., Jouve, M., Nataro, J. P., Gounon, P., and Bouguenec, C. (2000). Characterization of the AfaD-like family of invasins encoded by pathogenic Escherichia coli. FEBS Lett. 479, 111–117.CrossRefGoogle ScholarPubMed
Godaly, G., Hedges, S., Proudfoot, A., et al. (1997). Role of epithelial interleukin-8 (Il-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect. Immun. 65, 3451–3456.Google ScholarPubMed
Goetz, M., Bubert, A., Wang, G., et al. (2001). Microinjection and growth of bacteria in the cytosol of mammalian host cells. Prot. Natl. Acad. Sci. U. S. A. 98, 2221–2226.Google ScholarPubMed
Guyer, D. M., Henderson, I. R., Nataro, J. P., and Mobley, H. L. (2000). Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol. Microbiol. 38, 53–66.CrossRefGoogle ScholarPubMed
Hedges, S., Svensson, M., and Svanborg, C. (1992). Interleukin-6 response of epithelial cell lines to bacterial stimulation in vitro. Infect. Immun. 60, 1295–1301.Google ScholarPubMed
Hedlund, M., Duan, R. D., Nilsson, A., and Svanborg, C. (1998). Sphingomyelin, glycophingolipids and ceramide signalling in cells exposed to P-Fimbriated Escherichia coli. Mol. Microbiol. 29, 1297–1306.CrossRefGoogle Scholar
Hedlund, M., Wachtler, C., Johansson, E., et al. (1999). P fimbriae-dependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Mol. Microbiol. 33, 693–703.CrossRefGoogle ScholarPubMed
Henderson, I. R. and Nataro, J. P. (2001). Virulence factors of autotransporter proteins. Infect. Immun. 69, 1231–1243.CrossRefGoogle Scholar
Henderson, I. R., Navarro-Garcia, F., and Nataro, J. P. (1998). The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378.CrossRefGoogle ScholarPubMed
Hooton, T. M. and Stamm, W. E. (1997). Diagnosis and treatment of uncomplicated urinary tract infection. Infect. Dis. Clin. North Am. 11, 551–581.CrossRefGoogle ScholarPubMed
Hopkins, A. M., Walsh, S. V., Varkade, P., Boquet, P., and Nusrat, A. (2002). Constitutive activation of Rho proteins by CNF1 influences tight junction structure and epithelial barrier function. J. Cell Science 116, 725–742.CrossRefGoogle Scholar
Hultgren, S. J., Porter, T. N., Schaeffer, A. J., and Duncan, J. L. (1985). Role of the type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect. Immun. 50, 370–377.Google Scholar
Hultgren, S. J., Jones, S. H., and Normark, S. (1996). Bacterial adhesins and their assembly. In Escherichia coli and Salmonella: Cellular and Molecular Biology, ed. Neidhardt, F. C.. Washington. DC: American Society of Microbiology, pp. 2730–2756.
Hung, D. L. and Hultgren, S. J. (1998). Pilus biogenesis via the chaperone/user pathway: an interaction of the structure and the function. J. Struct. Biol. 124, 201–220.CrossRefGoogle Scholar
Johansen, T. E. B. (2004). Nosocomially acquired urinary tract infections in urology departments: why an international prevalence study is needed in urology. Int. J. Antimicrobial Agents 23, 30–34.CrossRefGoogle ScholarPubMed
Johnson, J. R., Delavari, P., and O'Bryan, T. T. (2001). Escherichia coli O18:K1:H7 isolates from patients with acute cystitis and neonatal meningitis exhibit common phylogenetic origins and virulence factor profiles. J. Infect. Dis. 183, 425–434.CrossRefGoogle ScholarPubMed
Justice, S. S., Hung, C., Theriot, J. A., et al. (2004). Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Prot. Natl. Acad. Sci. U. S. A. 101, 1333–1338.CrossRefGoogle ScholarPubMed
Kau, A. L., Hunstad, D. A., and Hultgren, S. J. (2005). Interaction of uropathogenic Escherichia coli with host uroepithelium. Curr. Opin. Microbiol. 8, 54–59.CrossRefGoogle ScholarPubMed
Kim, K. J., Chung, J. W., and Kim, K. S. (2005). The 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J. Biol. Chem. 280, 1360–1368.CrossRefGoogle ScholarPubMed
Lafont, F., Abrami, L., and Goot, F. G. (2004). Bacterial subversion of lipid rafts. Curr. Opin. Microbiol. 7, 4–10.CrossRefGoogle ScholarPubMed
Lally, E. T., Hill, R. B., Kieba, I. R., and Korostoff, J. (1999). The interaction between RTX toxin and target cells. Trends Microbiol. 7, 356–361.CrossRefGoogle ScholarPubMed
Landraud, L., Gauthier, M., Fosse, T., and Boquet, P. (2000). Frequency of Escherichia coli strains producing the cytotoxic necrotizing factor (CNF1) in nosocomial urinary tract infection. Lett. Applied. Microbiol. 30, 213–218.CrossRefGoogle Scholar
Landraud, L., Gibert, M.Popoff, M. R., Boquet, P., and Gauthier, M. (2003). Expression of cnf1 by Escherichia coli J96 involves a large uptstream DNA region including the hlyCABD operon, and is regulated by the RfaH protein. Mol. Microbiol. 47, 1653–1667.CrossRefGoogle ScholarPubMed
Lemichez, E., Flatau, G., Bruzzone, M., Boquet, P., and Gauthier, M. (1997). Molecular localisation of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol. Microbiol. 24, 1061–1070.CrossRefGoogle Scholar
Lerm, M., Selzer, J., Hoffmeyer, A., et al. (1999). Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of C-Jun N-terminal kinase in Hela cells. Infect. Immun. 67, 496–503.Google ScholarPubMed
Lerm, M., Pop, M., Fritz, G., Aktories, K., and Schmidt, G. (2002). Proteasomal degradation of cytotoxic necrotizing factor 1-activated rac. Infect. Immun. 70, 4053–4058.CrossRefGoogle ScholarPubMed
Madersbacher, S., Thalhammer, F., and Marberger, M. (2000). Pathogenesis and management of recurrent urinary tract infecton in women. Curr. Opin. Urol. 10, 29–33.CrossRefGoogle Scholar
Martinez, J. J. and Hultgren, S. J. (2002). Requirement of Rho-family GTPases in the invasion of type 1-piliated uropathogenic Escherichia coli. Cell. Microbiol. 4, 19–28.CrossRefGoogle ScholarPubMed
Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S., and Hultgren, S. J. (2000). Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 12, 2803–2812.CrossRefGoogle Scholar
McCormick, B. A. (2003.) The use of transepithelial models to examine host–pathogen interactions. Curr. Opin. Microbiol. 6, 77–81.CrossRefGoogle ScholarPubMed
Medzhitov, R. and Janeway, C. (2000). Innate Immunity. N. Engl. J. Med. 343, 338–344.CrossRefGoogle ScholarPubMed
Min, G., Solz, M., Zhou, G., et al. (2002). Localization of uroplakin 1a, the urothelium receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelium plaque particle. J. Mol. Biol. 317, 697–706.CrossRefGoogle ScholarPubMed
Mobley, H. L. (2000). Virulence of the two primary uropathogens. ASM News 66, 403–410.Google Scholar
Mobley, H. L., Chippendale, G. R., Tenney, J. H., Hull, R. A., and Warren, J. W. (1987). Expression of the type 1 fimbriae may be required for persistence of Escherichia coli in the catheterized urinary tract. J. Clin. Microbiol. 25, 2253–2257.Google ScholarPubMed
Moon, S. Y. and Zheng, Y. (2003). Rho GTPases-activiting proteins in cell regulation. Trends Cell Biol. 13, 13–22.CrossRefGoogle ScholarPubMed
Mulvey, M. A., Lopez-Boado, Y. S., Wilson, C. L., et al. (1998). Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497.CrossRefGoogle ScholarPubMed
Mulvey, M. A., Schilling, J. D., Martinez, J. J., and Hultgren, S. J. (2000). Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc. Natl. Acad. Sci. U. S. A. 97, 8829–8835.CrossRefGoogle ScholarPubMed
Mulvey, M. A., Schilling, J. D., and Hultgren, S. J. (2001). Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579.CrossRefGoogle ScholarPubMed
Munro, P., Flatau, G., Doye, A., et al. (2004). Activation and proteasomal degradation of Rho GTPases by cytotoxic necrotizing factor-1 elicit a controlled inflammatory response. J. Biol. Chem. 279, 35 849–35 857.CrossRefGoogle ScholarPubMed
Nowicki, B., Labigne, A., Moseley, S., et al. (1990). The Dr hemagglutinin, afimbrial adhesins AFA-1 and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutins with Dr receptor recognition. Infect. Immun. 58, 279–281.Google Scholar
Parham, N. J., Srinivasan, U., Desvaux, M., et al. (2004). PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol. Lett. 230, 73–83.CrossRefGoogle ScholarPubMed
Pei, S., Doye, A., and Boquet, P. (2001). Mutation of specific acidic residues of the CNF1 T domain into lysine alters cell membrane translocation of the toxin. Mol. Microbiol. 41, 1237–1247.CrossRefGoogle Scholar
Pernestig, A. K., Normark, S. J., Georgellis, D., and Melefors, O. (2000). The role of the AirS two-component system in uropathogenic Escherichia coli. Adv. Exp. Med. Biol. 485, 137–142.CrossRefGoogle ScholarPubMed
Philpott, D. J. and Girardin, S. E. (2004). The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41, 1099–1108.CrossRefGoogle ScholarPubMed
Plançon, L., du Merle, L., Friec, S., et al. (2003). Recognition of the cellular β1-chain integrin by the bacterial AfaD invasin is implicated in the internalization of afa-expressing pathogenic Escherichia coli strains. Cell. Microbiol. 5, 681–693.CrossRefGoogle ScholarPubMed
Pohlner, J., Halter, R., Beyreuther, K., and Meyer, T. F. (1987). Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462.CrossRefGoogle ScholarPubMed
Rippere-Lampe, K. E., Brien, A. O., Conran, R., and Lockman, H. A. (2001). Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun. 69, 3954–3964.CrossRefGoogle ScholarPubMed
Ronald, A. (2003). The etiology of urinary tract infections: traditional and emerging pathogens. Dis. Mon. 49, 71–82.CrossRefGoogle ScholarPubMed
Russo, T. A. and Johnson, J. R. (2003). Medical and economic impact of extraintestinal infectons due to Escherichia coli: focus on an increasing important endemic problem. Microbes Infect. 5, 449–456.CrossRefGoogle Scholar
Sabharanjak, S., Sharma, P., Parton, R. G., and Mayor, S. (2002). GPI-anchored proteins are delivered to recycling endosomes via a distinct Cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423.CrossRefGoogle Scholar
Sauer, F. G., Fütterer, K., Pinkner, J. S., et al. (1999). Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061.CrossRefGoogle ScholarPubMed
Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G., and Hultgren, S. J. (2001). Bacterial invasion augments epithelial cytokine response to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155.CrossRefGoogle ScholarPubMed
Schmidt, G., Sehr, P., Wilm, M., et al. (1997). Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387, 725–729.CrossRefGoogle ScholarPubMed
Schutze, S., Potthoff, K., Machleidt, T., et al. (1992). TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingolmyelin breakdown. Cell 71, 765–776.CrossRefGoogle Scholar
Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569–572.CrossRefGoogle ScholarPubMed
Snyder, J. A., Haugen, B. J., Buckles, E. L., et al. (2004). Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72, 6373–6381.CrossRefGoogle ScholarPubMed
Söderblom, T., Oxhamre, C., Torstensson, E., and Richter-Dahlfors, A. (2003). Bacterial proteins toxins and inflammation. Scand. J. Infect. Dis. 35, 628–631.CrossRefGoogle Scholar
Struve, C. and Krogfelt, K. A. (1999). In vivo detection of Escherichia coli type 1 fimbrial expression and phase variation during experimental urinary tract infectionMicrobiolgy 145, 2683–2690.CrossRefGoogle ScholarPubMed
Svanborg, C., Bergsten, G., Fischer, H., et al. (2001). The “innate” host response protects and damages the infected urinary tract. Ann. Med. 33, 563–570.CrossRefGoogle ScholarPubMed
Swenson, D. L., Bukanov, N. O., Berg, D. E., and Welch, R. A. (1996). Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmids cloning and sample sequencing. Infect. Immun. 64, 3736–3743.Google ScholarPubMed
Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol. Rev. 81, 153–208.CrossRefGoogle ScholarPubMed
Thomas, W. E.Trintchina, E., Forero, M., et al. (2002). Bacterial adhesion to target cells enhanced by shear force. Cell 109, 913–923.CrossRefGoogle ScholarPubMed
Warren, J. W. (1996). Clinical presentation and epidemiology of urinary tract infections. In Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, ed. Mobley, H. T. L. and Warren, J. W.. Washington, DC: American Society of Microbiology, pp. 3–27.Google Scholar
Welch, R. A., Burland, V., Plunkett, , G., 3rd, et al. (2002). Extensive mosaic structure revealed by the genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 99, 17 020–17 024.CrossRefGoogle ScholarPubMed
Wullt, B., Bergsten, G., Fischer, H., et al. (2003). The host response to urinary tract infection. Infect. Dis. Clin. North Am. 17, 279–301.CrossRefGoogle ScholarPubMed
Zhang, D., Zhang, G., Hayden, M. S., et al. (2004). A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526.CrossRefGoogle ScholarPubMed
Zhou, G., Mo, W. J., Sebbel, P., et al. (2001). Uroplakin 1a is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vito FimH binding. J. Cell Sci. 114, 4095–4103.Google Scholar
Zotti, C. M., Messori, I. G., Charrier, L., et al. (2004). Hospital-acquired infections in Italy: a region wide prevalence study. J. Hosp. Infect. 56, 142–149.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Uropathogenic bacteria
    • By Luce Landraud, Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France, René Clément, Unité INSERM, Faculté de Médecin, Nice, France, Patrice Boquet, Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Uropathogenic bacteria
    • By Luce Landraud, Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France, René Clément, Unité INSERM, Faculté de Médecin, Nice, France, Patrice Boquet, Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Uropathogenic bacteria
    • By Luce Landraud, Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France, René Clément, Unité INSERM, Faculté de Médecin, Nice, France, Patrice Boquet, Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Nice, France
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.014
Available formats
×