Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-09T10:31:32.526Z Has data issue: false hasContentIssue false

12 - Applications of stress and deformation principles to classical problems

Published online by Cambridge University Press:  24 November 2009

Roger LeB. Hooke
Affiliation:
University of Maine, Orono
Get access

Summary

In this chapter, we will study some glaciologically significant problems for which an appreciation of the material presented in Chapters 9 and 10 is required. Our objective is not to provide a comprehensive overview of theoretical developments in glaciology, but rather to solidify the gains made in these preceding two chapters by applying the principles developed therein. In the course of this discussion, the student will be introduced to some definitive studies, frequently referenced in the glaciological literature.

Let us first consider the problem of closure of a cylindrical borehole, in part because this is relevant to our earlier discussion of glacier hydrology. Then we will investigate efforts to calculate basal shear stresses using a force balance model, followed by study of the creep of ice shelves. Finally, the problem of using borehole deformation experiments to obtain estimates of the values of the parameters in the flow law will round out the chapter.

Collapse of a cylindrical hole

The first problem we address is that of the closure of a cylindrical hole in ice. This problem was studied by Nye (1953) in the context of using closure rates of tunnels in ice to estimate the constants in Glen's flow law, and our development is based on Nye's paper. More recently, the theory has been used to analyze two problems in water flow at the base of a glacier: (1) the closure of a water conduit, and (2) leakage of water into or away from a subglacial conduit.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×