Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T00:30:20.905Z Has data issue: false hasContentIssue false

5 - Hierarchical Bayesian nonparametric models with applications

Published online by Cambridge University Press:  06 January 2011

Nils Lid Hjort
Affiliation:
Universitetet i Oslo
Chris Holmes
Affiliation:
University of Oxford
Peter Müller
Affiliation:
University of Texas, M. D. Anderson Cancer Center
Stephen G. Walker
Affiliation:
University of Kent, Canterbury
Get access

Summary

Hierarchical modeling is a fundamental concept in Bayesian statistics. The basic idea is that parameters are endowed with distributions which may themselves introduce new parameters, and this construction recurses. In this review we discuss the role of hierarchical modeling in Bayesian nonparametrics, focusing on models in which the infinite-dimensional parameters are treated hierarchically. For example, we consider a model in which the base measure for a Dirichlet process is itself treated as a draw from another Dirichlet process. This yields a natural recursion that we refer to as a hierarchical Dirichlet process. We also discuss hierarchies based on the Pitman–Yor process and on completely random processes. We demonstrate the value of these hierarchical constructions in a wide range of practical applications, in problems in computational biology, computer vision and natural language processing.

Introduction

Hierarchical modeling is a fundamental concept in Bayesian statistics. The basic idea is that parameters are endowed with distributions which may themselves introduce new parameters, and this construction recurses. A common motif in hierarchical modeling is that of the conditionally independent hierarchy, in which a set of parameters are coupled by making their distributions depend on a shared underlying parameter. These distributions are often taken to be identical, based on an assertion of exchangeability and an appeal to de Finetti's theorem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×