Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T18:20:30.089Z Has data issue: false hasContentIssue false

9 - The GRB–supernova connection

Published online by Cambridge University Press:  05 December 2012

Jens Hjorth
Affiliation:
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark
Joshua S. Bloom
Affiliation:
Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720, USA
Chryssa Kouveliotou
Affiliation:
NASA-Marshall Space Flight Center, Huntsville
Ralph A. M. J. Wijers
Affiliation:
Universiteit van Amsterdam
Stan Woosley
Affiliation:
University of California, Santa Cruz
Get access

Summary

Introduction

The discovery and localization of the first afterglows of GRBs rapidly led to the establishment of the long-sought distance scale for the sources (see Chapter 4), which began an earnest observational hunt for their progenitors. A preponderance of evidence linked long-duration, soft-spectrum GRBs with the death of massive stars. The observations of the GRB-supernova (SN) connection, the main subject of this chapter, present the most direct evidence of this physical link.

Well before the afterglow era, Paczyński (1986) noted that “cosmological” distances of GRBs would imply that the energy release in gamma rays would be comparable to the energy release in a typical SN explosion. Seen as more than just a coincidence, this energetics connection between GRBs and the death of massive stars was fleshed out into what is now referred to as the collapsar model (Woosley 1993, 1996, MacFadyen & Woosley 1999). Briefly, the collapsar involves the core-collapse explosion of a stripped-envelope massive star. Matter flows towards a newly formed black hole or rapidly spinning, highly magnetized neutron star (“magnetar”; e.g., Bucciantini et al. 2009). Powerful jets plow through the collapsing star along the spin axis, eventually obtain relativistic speeds, and produce GRBs. Enough 56Ni is produced near the central compact source to power a supernova explosion of the star. The original “failed Ib” model posited that little 56Ni would be produced during core collapse of a massive star that produces a GRB, and thus no traditional SN would be visible.

Type
Chapter
Information
Gamma-ray Bursts , pp. 169 - 190
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amati, L. et al. (2007). A&A 463, 913.
Asplund, M., Grevesse, N., & Sauval, A. J. (2005). In Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, AIP Conf. Proc. 336, eds: T. G., Barnes III, & F. N., Bash, 25.
Badenes, C., Bravo, E., & Hughes, J. P. (2009). In AIP Conf. Proc. 1111, eds: G., Giobbi et al., 307–310.
Berger, E., Kulkarni, S. R., Frail, D. A., & Soderberg, A. M. (2003a). ApJ 599, 408.
Berger, E. et al. (2003b). Nature 426, 154.
Berger, E., Fox, D. B., Cucchiara, A., & Cenko, S. B. (2008). GCN Circ.8335.
Bersier, D. et al. (2006). ApJ 643, 284.
Björnsson, G., Hjorth, J., Jakobsson, P., Christensen, L., & Holland, S. (2001). ApJ 552, L121.
Bloom, J. S. et al. (1998). ApJ 506, L105.
Bloom, J. S. et al. (1999a). Nature 401, 453.
Bloom, J. S., Sigurdsson, S., & Pols, O. R. (1999b). MNRAS 305, 763.
Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. (2002a). AJ 123, 1111.
Bloom, J. S. et al. (2002b). ApJ 572, L45.
Bloom, J. S. et al. (2006). ApJ 638, 354.
Bloom, J. S., Butler, N. R., & Perley, D. A. (2008). In AIP Conf. Proc. 1000, eds: M., Galassi, D., Palmer, & E., Fenimore, 11–15.
Bloom, J. S. et al. (2009). ApJ 691, 723.
Bucciantini, N. et al. (2009). MNRAS 396, 2038.
Bufano, F., Benetti, S., Sollerman, J., Pian, E., & Cupani, G. (2011). Astron. Nachrichten 332, 262.
Butler, N. R. (2007). ApJ 656, 1001.
Butler, N. R. et al. (2005). ApJ 621, 884.
Butler, N. R., Bloom, J. S., & Poznanski, D. (2010). ApJ 711, 495.
Calura, F., Dessauges-Zavadski, M., Prochaska, J. X., & Matteucci, F. (2009). ApJ 693, 1236.
Campana, S. et al. (2006). Nature 442, 1008.
Campana, S. et al. (2008). ApJ 683, L9.
Campisi, M. A. & Li, L.-X. (2008). MNRAS 391, 935.
Cano, Z. et al. (2011). MNRAS 413, 669.
Castro Cerón, J. M. et al. (2010). ApJ 721, 1919.
Castro-Tirado, A. J. & Gorosabel, J. (1999). A&AS 138, 449.
Castro-Tirado, A. J. et al. (2001). A&A 370, 398.
Castro-Tirado, A. J. et al. (2010). A&A 517, A61.
Cenko, S. B., Gezari, S., Small, T., Fox, D. B., & Berger, E. (2007). GCN Circ.6322.
Cenko, S. B. et al. (2009). GCN Circ.9518.
Cenko, S. B. et al. (2011). ApJ 732, 29.
Chen, H.-W. et al. (2007). ApJ 663, 420.
Chevalier, R. A. & Li, Z.-Y. (1999). ApJ 520, L29.
Chornock, R. et al. (2010). arXiv:1004.2262.
Christensen, L., Hjorth, J., & Gorosabel, J. (2004). A&A 425, 913.
Christensen, L. et al. (2008). A&A 490, 45.
Cobb, B. E., Bailyn, C. D., van Dokkum, P. G., Buxton, M. M., & Bloom, J. S. (2004). ApJ 608, L93.
Cobb, B. E., Bailyn, C. D., van Dokkum, P. G., & Natarajan, P. (2006). ApJ 651, L85.
Cobb, B. E. et al. (2010). ApJ 718, L150.
Colgate, S. A. (1968). Canadian J. Phys. 46, 476.
de Ugarte Postigo, A. et al. (2011). GCN Circ.11579.
Della Valle, M. et al. (2003). A&A 406, L33.
Della Valle, M. et al. (2006a). Nature 444, 1050.
Della Valle, M. et al. (2006b). ApJ 642, L103.
Della Valle, M. (2007). Rev. Mexicana Astron. Astrof. Conf. Ser. 30, 104–109.
Della Valle, M. et al. (2008). CBET1602.
Djorgovski, S. G. et al. (2003). In Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes II, Proc. SPIE ed: P., Guhathakurta, 4834, 238–247.
Esin, A. A. & Blandford, R. (2000). ApJ 534, L151.
Ferrero, P. et al. (2006). A&A 457, 857.
Foley, R. J. et al. (2009). AJ 138, 376.
Foley, S. et al. (2006). A&A 447, 891.
Fox, D. B. et al. (2005). Nature 437, 845.
Frail, D. A. et al. (2001). ApJ 562, L55.
Fruchter, A. S. et al. (2006). Nature 441, 463.
Fryer, C. L., Woosley, S. E., & Hartmann, D. H. (1999). ApJ 526, 152.
Fryer, C. L., Holz, D. E., & Hughes, S. A. (2002). ApJ 565, 430.
Fryer, C. L., Young, P. A., & Hungerford, A. L. (2006). ApJ 650, 1028.
Fynbo, J. U. et al. (2000). ApJ 542, L89.
Fynbo, J. P. U. et al. (2003). A&A 406, L63.
Fynbo, J. P. U. et al. (2004). ApJ 609, 962.
Fynbo, J. P. U. et al. (2006). Nature 444, 1047.
Fynbo, J. P. U. et al. (2009). ApJS 185, 526.
Gal-Yam, A. et al. (2004). ApJ 609, L59.
Gal-Yam, A. et al. (2006). Nature 444, 1053.
Galama, T. J. et al. (1998). Nature 395, 670.
Galama, T. J. et al. (2000). ApJ 536, 185.
Garnavich, P. M. et al. (2003). ApJ 582, 924.
Ghisellini, G., Ghirlanda, G., & Tavecchio, F. (2007). MNRAS 382, L77.
Gorosabel, J. et al. (2005a). A&A 437, 411.
Gorosabel, J. et al. (2005b). A&A 444, 711.
Gorosabel, J. et al. (2006). A&A 459, L33.
Greiner, J. et al. (2003a). Nature 426, 157.
Greiner, J. et al. (2003b). ApJ 599, 1223.
Greiner, J. et al. (2003c). GCN Circ.2020.
Guetta, D. & Della Valle, M. (2007). ApJ 657, L73.
Hammer, F. et al. (2006). A&A 454, 103.
Heise, J., in't Zand, J., Kippen, R. M., & Woods, P. M. (2001). In Gamma-Ray Bursts in the Afterglow Era, eds: E., Costa, F., Frontera, & J., Hjorth. Berlin: Springer, p. 16.
Hill, J. et al. (2007). GCN Circ.6486.
Hjorth, J. et al. (2003). Nature 423, 847.
Hjorth, J. et al. (2005a). ApJ 630, L117.
Hjorth, J. et al. (2005b). Nature 437, 859.
Ioka, K. & Mészáros, P. (2010). ApJ 709, 1337.
Iwamoto, K. et al. (1998). Nature 395, 672.
Jakobsson, P. et al. (2006). A&A 447, 897.
Kaneko, Y. et al. (2007). ApJ 654, 385.
Kann, D. A., Schulze, S., & Updike, A. C. (2008). GCN Circ.7627.
Kawabata, K. S. et al. (2003). ApJ 593, L19.
Klebesadel, R. W., Strong, I. B., & Olson, R. A. (1973). ApJ 182, L85.
Kocevski, D. et al. (2010). MNRAS 404, 963.
Kochanek, C. S. et al. (2008). ApJ 684, 1336.
Koen, C. (2009). MNRAS 393, 1370.
Kouveliotou, C. et al. (1993). ApJ 413, L101.
Kouveliotou, C. et al. (2004). ApJ 608, 872.
Kulkarni, S. R. et al. (1998). Nature 395, 663.
Lazzati, D. et al. (2001). A&A 378, 996.
Le Floc'h, E. et al. (2003). A&A 400, 499.
Leonard, D. C. et al. (2006). Nature 440, 505.
Levan, A. et al. (2005a). ApJ 624, 880.
Levan, A. et al. (2005b). ApJ 622, 977.
Levesque, E. M. (2011). In Gamma Ray Bursts 2010, AIP Conf. Proc. 1358, 271.
Li, L.-X. & Paczyński, B. (1998). ApJ 507, L59.
Li, L.-X. (2008). MNRAS 388, 603.
Lipkin, Y. M. et al. (2004). ApJ 606, 381.
MacFadyen, A. I. & Woosley, S. E. (1999). ApJ 524, 262.
Maeda, K. et al. (2008). Science 319, 1220.
Maeda, K., Mazzali, P. A., & Nomoto, K. (2006). ApJ 645, 1331.
Malesani, D. et al. (2004). ApJ 609, L5.
Malesani, D. et al. (2009). ApJ 692, L84.
Margutti, R. et al. (2007). A&A 474, 815.
Masetti, N. et al. (2003). A&A 404, 465.
Masetti, N. et al. (2005). A&A 438, 841.
Matheson, T. et al. (2003a). GCN Circ.2107.
Matheson, T. et al. (2003b). ApJ 599, 394.
Maund, J. R. et al. (2007). A&A 475, L1.
Mazzali, P. A., Nomoto, K., Patat, F., & Maeda, K. (2001). ApJ 559, 1047.
Mazzali, P. A. et al. (2007a). ApJ 661, 892.
Mazzali, P. A., Nomoto, K., Maeda, K., & Deng, J. (2007b). In Rev. Mexicana Astron. Astrofi. Conf. Ser. 30, 23–28.
Mazzali, P. A. et al. (2008). Science 321, 1185.
McBreen, S. et al. (2008). ApJ 677, L85.
McKenzie, E. H. & Schaefer, B. E. (1999). PASP 111, 964.
McQuinn, M. et al. (2009). In astro2010: The Astronomy and Astrophysics Decadal Survey, 2010199.
Metzger, M. R. et al. (1997). Nature 387, 878.
Metzger, B. D. et al. (2010). MNRAS 406, 2650.
Michałowski, M. J. et al. (2009). ApJ 693, 347.
Mirabal, N. et al. (2003). ApJ 595, 935.
Mirabal, N., Halpern, J. P., An, D., Thorstensen, J. R., & Terndrup, D. M. (2006). ApJ 643, L99.
Modjaz, M. et al. (2006). ApJ 645, L21.
Modjaz, M. et al. (2008a). AJ 135, 1136.
Modjaz, M., Kirshner, R. P., Blondin, S., Challis, P., & Matheson, T. (2008b). ApJ 687, L9.
Modjaz, M. et al. (2009). ApJ 702, 226.
Moriya, T. et al. (2010). ApJ 719, 1445.
Nomoto, K. et al. (2006). Nuovo Cim. B 121, 1207.
Odewahn, S. C. et al. (1998). ApJ 509, L5.
Ofek, E. O. et al. (2007). ApJ 662, 1129.
Olivares, E. F. et al. (2011). GCN Circ.11578.
Ott, C. D., Burrows, A., Dessart, L., & Livne, E. (2006). Phys. Rev. Lett. 96, 201102.
Paczyński, B. (1986). ApJ 308, L43.
Paczyński, B. (1998). ApJ 494, L45.
Panaitescu, A. & Kumar, P. (2002). ApJ 571, 779.
Pastorello, A. et al. (2007). Nature 449, 1.
Patat, F. et al. (2001). ApJ 555, 900.
Perley, D. A., Foley, R. J., Bloom, J. S., & Butler, N. R. (2006). GCN Circ.5387.
Perley, D. A. et al. (2009). AJ 138, 1690.
Pian, E. et al. (2000). ApJ 536, 778.
Pian, E. et al. (2006). Nature 442, 1011.
Podsiadlowski, P., Mazzali, P. A., Nomoto, K., Lazzati, D., & Cappellaro, E. (2004). ApJ 607, L17.
Predehl, P. & Schmitt, J. H. M. M. (1995). A&A 293, 889.
Price, P. A. et al. (2002). ApJ 572, L51.
Price, P. A. et al. (2003a). Nature 423, 844.
Price, P. A. et al. (2003b). ApJ 589, 838.
Prochaska, J. X. et al. (2004). ApJ 611, 200.
Prochaska, J. X., Chen, H.-W., & Bloom, J. S. (2006). ApJ 648, 95.
Prochaska, J. X., Dessauges-Zavadsky, M., Ramirez-Ruiz, E., & Chen, H.-W. (2008). ApJ 685, 344.
Prochaska, J. X. et al. (2009). ApJ 691, L27.
Ramirez-Ruiz, E., García-Segura, G., Salmonson, J. D., & Pérez-Rendón, B. (2005). ApJ 631, 435.
Reichart, D. E. (1999). ApJ 521, L111.
Richardson, D., Branch, D., & Baron, E. (2006). AJ 131, 2233.
Richardson, D. (2009). AJ 137, 347.
Rosswog, S. et al. (1999). A&A 341, 499.
Rosswog, S. & Ramirez-Ruiz, E. (2002). MNRAS 336, L7.
Sazonov, S. Y., Lutovinov, A. A., & Sunyaev, R. A. (2004). Nature 430, 646.
Schady, P. et al. (2010). MNRAS 401, 2773.
Schaefer, B. E. et al. (2003). ApJ 588, 387.
Soderberg, A. M.Frail, D. A., & Wieringa, M. H. (2004). ApJ 607, L13.
Soderberg, A. M. et al. (2005). ApJ 627, 877.
Soderberg, A. M. (2006). In Gamma-Ray Bursts in the Swift Era, AIP Conf. Proc. 836, eds: S. S., Holt, N., Gehrels, & J. A., Nousek, 380–385.
Soderberg, A. M. et al. (2006a). ApJ 636, 391.
Soderberg, A. M.Nakar, E., Berger, E., & Kulkarni, S. R. (2006b). ApJ 638, 930.
Soderberg, A. M. et al. (2007). ApJ 661, 982.
Soderberg, A., Berger, E., & Fox, D. (2008a). GCN Circ.8662.
Soderberg, A. M. et al. (2008b). Nature 453, 469.
Soderberg, A. M. et al. (2010). Nature 463, 513.
Sollerman, J. et al. (2000). ApJ 537, L127.
Sollerman, J. et al. (2005). New Astron. 11, 103.
Sollerman, J. et al. (2006). A&A 454, 503.
Sollerman, J. et al. (2007). A&A 466, 839.
Sparre, M. et al. (2011). ApJ 735, L24.
Stanek, K. Z. et al. (2003). ApJ 591, L17.
Stanek, K. Z. et al. (2005). ApJ 626, L5.
Stanek, K. Z. et al. (2006). Acta Astron. 56, 333.
Starling, R. L. C. et al. (2008). ApJ 672, 433.
Starling, R. L. C. et al. (2011). MNRAS 411, 2792.
Tanvir, N. R. et al. (2009). Nature 461, 1254.
Tanvir, N. R. et al. (2010). ApJ 725, 625.
Thomsen, B. et al. (2004). A&A 419, L21.
Thöne, C. C. et al. (2008). ApJ 676, 1151.
Tiengo, A. & Mereghetti, S. (2006). A&A 449, 203.
Tominaga, N. et al. (2004). ApJ 612, L105.
Tominaga, N. et al. (2007). ApJ 657, L77.
Valenti, S. et al. (2009). Nature 459, 674.
van Marle, A. J., Langer, N., Achterberg, A., & Garcaía-Segura, G. (2006). A&A 460, 105.
van Paradijs, J. (1999). Science 286, 693.
Vanderspek, R. et al. (2004). ApJ 617, 1251.
Vaughan, S. et al. (2004). ApJ 603, L5.
Vietri, M. & Stella, L. (1998). ApJ 507, L45.
Watson, D. et al. (2004). ApJ 605, L101.
Watson, D. et al. (2006). ApJ 636, 967.
Waxman, E. & Loeb, A. (1999). ApJ 515, 721.
Waxman, E., Mészáros, P., & Campana, S. (2007). ApJ 667, 351.
Wiersema, K. et al. (2007). A&A 464, 529.
Wiersema, K. et al. (2008). A&A 481, 319.
Wijers, R. A. M. J. (2001). In Gamma-Ray Bursts in the Afterglow Era, eds: E., Costa, F., Frontera, & J., Hjorth. Berlin: Springer, p. 306.
Woosley, S. E. (1993). ApJ 405, 273.
Woosley, S. E. (1996). In AIP Conf. Proc. 384, eds: C., Kouveliotou, M. F., Briggs, & G. J., Fishman, 709–718.
Woosley, S. E., Eastman, R. G., & Schmidt, B. P. (1999). ApJ 516, 788.
Woosley, S. E. & Bloom, J. S. (2006). ARA&A 44, 507.
Xu, D., Zou, Y.-C., & Fan, Y.-Z. (2008). arXiv:0801.4325.
Xu, D. et al. (2009). ApJ 696, 971.
Yoon, S.-C., Langer, N., & Norman, C. (2006). A&A 460, 199.
Yost, S. A., Harrison, F. A., Sari, R., & Frail, D. A. (2003). ApJ 597, 459.
Zeh, A., Klose, S., & Hartmann, D. H. (2004). ApJ 609, 952.
Zhang, B. et al. (2007). ApJ 655, L25.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The GRB–supernova connection
    • By Jens Hjorth, Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark, Joshua S. Bloom, Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The GRB–supernova connection
    • By Jens Hjorth, Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark, Joshua S. Bloom, Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The GRB–supernova connection
    • By Jens Hjorth, Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark, Joshua S. Bloom, Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720, USA
  • Edited by Chryssa Kouveliotou, NASA-Marshall Space Flight Center, Huntsville, Ralph A. M. J. Wijers, Universiteit van Amsterdam, Stan Woosley, University of California, Santa Cruz
  • Book: Gamma-ray Bursts
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511980336.010
Available formats
×