Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-17T11:57:24.981Z Has data issue: false hasContentIssue false

2 - Prospects for the development of animal models of bipolar disorder

Published online by Cambridge University Press:  05 May 2016

Jair C. Soares
Affiliation:
University of Texas Health Science Center, Houston
Allan H. Young
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
, pp. 8 - 20
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, S.J., Damas, C., Navarro, E., et al. Behavioral despair in mice after prenatal stress. J Physiol Biochem. 2000;56:7782.CrossRefGoogle ScholarPubMed
Arban, R., Maraia, G., Brackenborough, K., et al. Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behav Brain Res. 2005;158:123–32.CrossRefGoogle Scholar
Barr, A.M., Zis, A.P., Phillips, A.G., et al. Repeated electroconvulsive shock attenuates the depressive-like effects of D-amphetamine withdrawal on brain reward function in rats. Psychopharmacology. 2002;159: 196202.CrossRefGoogle ScholarPubMed
Belmaker, R.H. Bipolar disorder. N Engl J Med. 2004;351:476–86.CrossRefGoogle ScholarPubMed
Benedetti, F., Fresi, F., Maccioni, P., et al. Behavioural sensitization to repeated sleep deprivation in a mice model of mania. Behav Brain Res. 2008;187:221–7.CrossRefGoogle Scholar
Berk, M., Dodd, S., Kauer-Sant-Anna, M., et al. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand. 2007;116(Suppl. 434):41–9.CrossRefGoogle Scholar
Blier, P., Ward, N.M. Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry. 2003;53:193203.CrossRefGoogle Scholar
Braff, D.L., Geyer, M.A., Swerdlow, N.R. Human studies of pre-pulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacol. 2001;156:234–58.CrossRefGoogle ScholarPubMed
Cade, J.F. Lithium salts in the treatment of psychotic excitement. Med J Aust. 1949;2:249352.CrossRefGoogle ScholarPubMed
Cagniard, B., Balsam, P.D., Brunner, D., et al. Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacol. 2006;31:1362–70.CrossRefGoogle Scholar
Cairncross, K.D., Cox, B., Forster, C., et al. A new model for the detection of antidepressant drugs: Olfactory bulbectomy in the rat compared with existing models. J Pharmacol Methods 1978;1: 131–43.CrossRefGoogle Scholar
Cappeliez, P., Moore, E. Effects of lithium on an amphetamine animal model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 1990;14: 347–58.CrossRefGoogle Scholar
Cases, O., Seif, I., Grimsby, J., et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAO-A. Science. 1995;268:1763–6.CrossRefGoogle Scholar
Cilia, J., Gartlon, J.E., Shilliam, C., et al. Further neurochemical and behavioural investigation of Brattleboro rats as a putative model of schizophrenia. J Psychopharmacol. 2010;24:407–19.CrossRefGoogle ScholarPubMed
Conti, A.C., Cryan, J.F., Dalvi, A., et al. c-AMP response element-binding protein is essential for the up-regulation of brain-derived neurotrophic factor transcription, but not the behavioural or endocrine responses to antidepressant drugs. J Neurosci. 2002;22:3262–8.CrossRefGoogle ScholarPubMed
Craddock, N., Sklar, P. Genetics of bipolar disorder. Lancet 2013;381:1654–62.CrossRefGoogle ScholarPubMed
Cryan, J.F., McGrath, C., Leonard, B.E., et al. Combining pindolol and paroxetine in an animal model of chronic antidepressant action – Can early onset of action be detected? Eur J Pharmacol. 1998;352:23–8.CrossRefGoogle Scholar
Cryan, J.F., Dalvi, A., Jin, S.H., et al. Use of dopamine- β-hydroxylase deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther. 2001;298:651–7.Google ScholarPubMed
Cryan, J.F., Markou, A., Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002;23: 238–45.CrossRefGoogle ScholarPubMed
Cryan, J.F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Bio-behav Rev. 2005;29: 571625.CrossRefGoogle Scholar
Davies, J.A., Jackson, B., Redfern, P.H. The effect of amantadine, L-dopa, (plus)-amphetamine and apomorphine on the acquisition of the conditioned avoidance response. Neuropharmacol. 1974;13:199204.CrossRefGoogle ScholarPubMed
de Montigny, C., Aghajanian, G.K. Tricyclic antidepressants: Long term treatment increases responsivity of rat forebrain neurons to serotonin. Science. 1978;202:1303–6.CrossRefGoogle ScholarPubMed
Dencker, D., Husum, H. Antimanic efficacy of retigabine in a proposed mouse model of bipolar disorder. Behav Brain Res. 2010;207:7883.CrossRefGoogle Scholar
Dencker, D., Dias, R., Pedersen, M.L., et al. Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav. 2008;12: 4953.CrossRefGoogle Scholar
Dugovic, C., Maccari, S., Weibel, L., et al. High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci. 1999;19:8656–64.CrossRefGoogle ScholarPubMed
Duman, R.S., Malberg, J., Thome, J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry. 1999;46: 1181–91.CrossRefGoogle ScholarPubMed
Einat, H. Establishment of a battery of simple models for facets of bipolar disorder: A practical approach to achieve increased validity, better screening and possible insights into endophenotypes of disease. Behav Genet. 2007a;37:244–55.CrossRefGoogle ScholarPubMed
Einat, H. Different behaviours and different strains: potential new ways to model bipolar disorder. Neurosci Biobehav Rev. 2007b;31:850–7.CrossRefGoogle ScholarPubMed
el-Mallakh, R.S., Harrison, L.T., Li, R., et al. An animal model for mania: preliminary results. Prog Neuropsychopharmacol Biol Psychiatry. 1995;19:955–62.Google ScholarPubMed
El Yacoubi, M., Bouali, S., Popa, D., et al. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc Natl Acad Sci USA. 2003; 100:6227–32.CrossRefGoogle ScholarPubMed
Feifel, D., Melendez, G., Shilling, P.D. Reversal of sensorimotor gating deficits in Brattleboro rats by acute administration of clozapine and a neurotensin agonist, but not haloperidol: a potential predictive model for novel antipsychotic effects. Neuropsychopharmacol. 2004;29:731–8.CrossRefGoogle Scholar
Flaisher-Grinberg, S., Overgaard, S., Einat, H. Attenuation of high sweet solution preference by mood stabilizers: A possible mouse model for the increased reward-seeking domain of mania. J Neurosci Methods. 2009;177:4450.CrossRefGoogle ScholarPubMed
Forbes, N., Stewart, C., Matthews, K., et al. Chronic mild stress and sucrose consumption: Validity as a model of depression. Physiol Behav. 1996;60: 1481–4.CrossRefGoogle ScholarPubMed
Fratta, W., Collu, M., Martellotta, M.C., et al. Stress-induced insomnia: Opioid-dopamine interactions. Eur J Pharmacol. 1987;142:437–40.CrossRefGoogle ScholarPubMed
Frey, B.N., Valvassori, S.S., Reus, G.Z., et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci. 2006; 31:326–32.Google Scholar
Gardner, R., Jr. Mechanisms in manic-depressive disorder: an evolutionary model. Arch Gen Psychiatry. 1982;39:1436–41.CrossRefGoogle ScholarPubMed
Geddes, J.R., Miklowitz, D.J. Treatment of bipolar disorder. Lancet. 2013;381: 1672–82.CrossRefGoogle ScholarPubMed
Gessa, G.L., Pani, L., Fadda, P., et al. Sleep deprivation in the rat: an animal model of mania. Eur Neuropsychopharmacol. 1995;5(Suppl.):8993.CrossRefGoogle ScholarPubMed
Geyer, M.A. Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox Res. 2008;14:71–8.CrossRefGoogle ScholarPubMed
Goldberg, J.F., Burdick, K.E. Levetiracetam for acute mania. Am J Psychiatry. 2002;159:148.CrossRefGoogle ScholarPubMed
Goodwin, F.K., Jamison, K.R. Manic-Depressive Illness: Bipolar Disorders and Recurrent Depression (2nd edn). New York: Oxford University Press; 2007.Google Scholar
Gould, T.D., Gottesman, I.I. Psychiatric endophenotypes and the development of valid animal models. Genes, Brain Behav. 2006;5: 113–19.CrossRefGoogle ScholarPubMed
Gould, T.D., Einat, H. Animal models of bipolar disorder and mood stabilizer efficacy: A critical need for improvement. Neurosci Biobehav Rev. 2007;31:825–31.CrossRefGoogle ScholarPubMed
Gould, T.J., Keith, R.A., Bhat, R.V. Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res. 2001;118:95105.CrossRefGoogle ScholarPubMed
Gould, T.D., Chen, G., Manji, H.K. In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacol. 2004;29:32–8.CrossRefGoogle ScholarPubMed
Grimsby, J., Toth, M., Chen, K., et al. Increased stress response and β-phenylethylamine in MAO-B-deficient mice. Nat Genet. 1997;17: 206–10.CrossRefGoogle Scholar
Harris, R., Zhou, J., Youngblood, B., et al. Failure to change exploration or saccharin preference in rats exposed to chronic mild stress. Physiol Behav. 1997;63:91100.CrossRefGoogle ScholarPubMed
Harrison, A.A., Liem, Y.T.B., Markou, A., et al. Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology. 2001;25:5571.CrossRefGoogle ScholarPubMed
Harrison-Read, P.E. Models of mania and antimanic drug actions: Progressing the endophenotype approach. J Psychopharmacol. 2009;23:334–7.CrossRefGoogle ScholarPubMed
Hasler, G., Drevets, W.C., Gould, T.D., et al. Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry. 2006;60: 93105.CrossRefGoogle ScholarPubMed
Heisler, L.K., Chu, H.M., Brennan, T.J., et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA. 1998;95:15049–54.CrossRefGoogle ScholarPubMed
Hicks, R.A., Moore, J.D., Hayes, C., et al. REM sleep deprivation increases aggressiveness in male rats. Physiol Behav. 1979;22:1097–100.Google ScholarPubMed
Judd, L.L., Akiskal, H.S., Schettler, P.J., et al. The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry. 2002;59:530–7.CrossRefGoogle ScholarPubMed
Kalueff, A.V., Wheaton, M., Murphy, D.L. What’s wrong with my mouse model? Advances and strategies in animal modelling of anxiety and depression. Behav Brain Res. 2007;179: 118.CrossRefGoogle ScholarPubMed
Kato, T., Kubota, M., Kasahara, T. Animal models of bipolar disorder. Neurosci Biobehav Rev. 2007;31:832–42.CrossRefGoogle ScholarPubMed
Keck, P.E., McElroy, S.L., Strakowski, S.M . Anticonvulsants and antipsychotics in the treatment of bipolar disorder. J Clin Psychiatry. 1998;59(Suppl. 6):7481.Google ScholarPubMed
Kelly, M.P., Logue, S.F., Dwyer, J.M., et al. The supra-additive hyperactivity caused by an amphetamine-chlordiazepoxide mixture exhibits an inverted-U dose–response: Negative implications for the use of a model in screening for mood stabilizers. Pharmacol Biochem Behav. 2009;92:649–54.CrossRefGoogle Scholar
Kim, S.H., Yu, H.S., Park, H.G., et al. Dose-dependent effect of intra-cerebroventricular injection of ouabain on the phosphorylation of the MEK1/2-ERK1/2-p90RSK pathway in the rat brain related to locomotor activity. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32: 1637–42.CrossRefGoogle Scholar
Knapp, D.J., Sim-Selley, L.J., Breese, G.R., et al. Selective breeding of 5-HT(1A) receptor-mediated responses: application to emotion and receptor action. Pharmacol Biochem Behav. 2000;67:701–8.CrossRefGoogle ScholarPubMed
Kokkinidis, L., Zacharko, R.M., Predy, P.A., et al. Post-amphetamine depression of self-stimulation responding from the substantia nigra: reversal by tricyclic antidepressants. Pharmacol Biochem Behav. 1980;13: 379–83.CrossRefGoogle ScholarPubMed
Koszewska, I., Rybakowski, J.K. Antidepressant-induced mood conversions in bipolar disorder: a retrospective study of tricyclic versus non-tricyclic antidepressant drugs. Neuropsychobiology. 2009;59:1216.CrossRefGoogle ScholarPubMed
Kromer, S.A., Kessler, M.S., Milfay, D., et al. Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci. 2005;25:4375–84.CrossRefGoogle Scholar
Lachman, H.M., Papolos, D.F., Weiner, E.D., et al. Hippocampal neuropeptide Y mRNA is reduced in a strain of learned helpless resistant rats. Brain Res Mol Brain Res. 1992;14:94100.CrossRefGoogle Scholar
Lamberty, Y., Margineanu, D.G., Klitgaard, H. Effect of the new antiepileptic drug levetiracetam in an animal model of mania. Epilepsy Behav. 2001;2:454–9.CrossRefGoogle Scholar
Lemonde, S., Turecki, G., Bakish, D., et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci. 2003;23:8788–99.CrossRefGoogle Scholar
Le-Niculescu, H., McFarland, M.J., Ogden, C.A., et al. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:134–66.CrossRefGoogle Scholar
Lucki, I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997;8: 523–32.CrossRefGoogle Scholar
Maier, S.F., Seligman, M.E.P. Learned helplessness: Theory and evidence. J Exp Psychol. 1976;1:346.CrossRefGoogle Scholar
Malatynska, E., Knapp, R.J. Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev. 2005;29: 715–37.CrossRefGoogle ScholarPubMed
Malatynska, E., Pinhasov, A., Crooke, J.J., et al. Reduction of dominant or submissive behaviours as models for antimanic or antidepressant drug testing: Technical considerations. J Neurosci Methods. 2007;165:175–82.CrossRefGoogle ScholarPubMed
Malkesman, O., Austin, D.R., Chen, G., et al. Reverse translational strategies for developing animal models of bipolar disorder. Dis Models Mechanisms. 2009;2: 238–45.CrossRefGoogle ScholarPubMed
Mayorga, A.J., Lucki, I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacol. 2001;155:110–12.CrossRefGoogle ScholarPubMed
Mayorga, A.J., Dalvi, A., Page, M.E., et al. Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther. 2001;298:1101–7.Google ScholarPubMed
McClung, C.A., Sidiropoulou, K., Vitaterna, M., et al. Regulation of dopaminergic transmission and cocaine reward by the clock gene. Proc Natl Acad Sci U S A. 2005;102:9377–81.CrossRefGoogle ScholarPubMed
Meyendorff, E., Lerer, B., Moore, N.C., et al. Methylphenidate infusion in euthymic bipolars: effect of carbamazepine pretreatment. Psychiatry Res. 1985;16:303–8.CrossRefGoogle ScholarPubMed
Miczek, K.A., Maxson, S.C., Fish, E.W., et al. Aggressive behavioural phenotypes in mice. Behav Brain Res. 2001;125:167–81.CrossRefGoogle ScholarPubMed
Minassian, A., Henry, B.L., Geyer, M.A., et al. The quantitative assessment of motor activity in mania and schizophrenia. J Affect Disord. 2009;120: 200–6.Google Scholar
Mitchell, P.J. Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol. 2005;526:147–62.CrossRefGoogle ScholarPubMed
Mitchell, P.J., Redfern, P.H. Potentiation of the time-dependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-HT1A receptor antagonist, WAY-100635. Behav Pharmacol. 1997;8:585606.CrossRefGoogle ScholarPubMed
Montkowski, A., Barden, N., Wotjak, C., et al. Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. J Neuroendocrinol. 1995;7: 841–5.CrossRefGoogle ScholarPubMed
Nelson, E.E., Winslow, J.T. Non-human primates: model animals for developmental psychopathology. Neuropsychopharm Rev. 2009;34: 90105.CrossRefGoogle ScholarPubMed
Neumaier, J.F., Edwards, E., Plotsky, P.M. 5-HT(1B) mRNAregulation in two animal models of altered stress reactivity. Biol Psychiatry. 2002;51:902–8.CrossRefGoogle Scholar
Norman, T.R., Cranston, I., Irons, J.A., et al. Agomelatine suppresses locomotor hyperactivity in olfactory bulbectomised rats: A comparison to melatonin and to the 5-HT2C antagonist, S32006. Eur J Pharmacol. 2012;674: 2732.CrossRefGoogle Scholar
O’Donnell, J.M., Marek, G.J., Seiden, L.S. Antidepressant effects assessed using behaviour maintained under a differential-reinforcement-of-low rate (DRL) operant schedule. Neurosci Biobehav Rev. 2005;29:785–98.Google Scholar
O’Donnell, K.C., Gould, T.D. The behavioural actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev. 2007;31:932–62.CrossRefGoogle ScholarPubMed
Overstreet, D.H. Behavioural characteristics of rat lines selected for differential hypothermic responses to cholinergic or serotonergic agonists. Behav Genet. 2002;32: 335–48.CrossRefGoogle ScholarPubMed
Overstreet, D.H., Russell, R.W., Helps, S.C., et al. Selective breeding for sensitivity to the anticholinesterase, DFP. Psychopharmacol. 1979;65:1520.CrossRefGoogle Scholar
Overstreet, D.H., Pucilowski, O., Rezvani, A.H., et al. Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of Flinders Sensitive Line rats as an animal model of depression. Psychopharmacol. 1995;121:2737.CrossRefGoogle ScholarPubMed
Overstreet, D.H., Rezvani, A.H., Knapp, D.J., et al. Further selection of rat lines differing in 5-HT-1A receptor sensitivity: behavioral and functional correlates. Psychiatr Genet. 1996;6:107–17.CrossRefGoogle Scholar
Parks, C.L., Robinson, P.S., Sibille, E., et al. Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA. 1998;95:10734–9.CrossRefGoogle ScholarPubMed
Peet, M., Peters, S. Drug-induced mania. Drug Saf. 1995;12:146–53.CrossRefGoogle ScholarPubMed
Perry, W., Minassian, A., Feifel, D., et al. Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry. 2001;50: 418–24.CrossRefGoogle ScholarPubMed
Perry, W., Minassian, A., Paulus, M.P., et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry. 2009;66:1072–80.CrossRefGoogle Scholar
Perry, W., Minassian, A., Henry, B., et al. Quantifying over-activity in bipolar and schizophrenia patients in a human open field paradigm. Psychiatry Res. 2010;178:8491.CrossRefGoogle Scholar
Poitou, P., Boulu, R., Bohuon, C. Effect of lithium and other drugs on the amphetamine chlordiazepoxide hyperactivity in mice. Experientia. 1975;31:99101.CrossRefGoogle ScholarPubMed
Popa, D., El Yacoubi, M., Vaugeois, J.M., et al. Homeostatic regulation of sleep in a genetic model of depression in the mouse: effects of muscarinic and 5-HT1A receptor activation. Neuropsychopharmacol. 2006;31: 1637–46.CrossRefGoogle Scholar
Porsolt, R.D., Le Pichon, M., Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.CrossRefGoogle ScholarPubMed
Porsolt, R.D., Anton, G., Blavet, N., et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47: 379–91.CrossRefGoogle ScholarPubMed
Prickaerts, J., Moechars, D., Cryns, K., et al. Transgenic mice overexpressing glycogen synthase kinase 3-beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26:9022–9.CrossRefGoogle ScholarPubMed
Pucilowski, O., Overstreet, D.H., Rezvani, A.H., et al. Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol Behav. 1993;54:1215–20.CrossRefGoogle Scholar
Ralph-Williams, R.J., Paulus, M.P., Zhuang, X., et al. Valproate attenuates hyperactive and perseverative behaviours in mutant mice with a dysregulated dopamine system. Biol Psychiatry. 2003;53:352–9.CrossRefGoogle ScholarPubMed
Ramboz, S., Oosting, R., Amara, D.A., et al. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder Proc Natl Acad Sci USA. 1998;95;14476–81.CrossRefGoogle ScholarPubMed
Redrobe, J.P., Nielsen, A.N. Effects of neuronal Kv7 potassium channel activators on hyperactivity in a rodent model of mania. Behav Brain Res. 2009;198:481–5.CrossRefGoogle Scholar
Roybal, K., Theobold, D., Graham, A., et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A. 2007;104:6406–11.CrossRefGoogle ScholarPubMed
Rupniak, N.M., Carlson, E.J., Webb, J.K., et al. Comparison of the phenotype of NK1R–/– mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol. 2001;12:497508.CrossRefGoogle ScholarPubMed
Sachs, G.S., Gardner-Schuster, E.E. Adjunctive treatment of acute mania: A clinical overview. Acta Psychiatr Scand Suppl. 2007;434:2734.CrossRefGoogle Scholar
Sanchis-Segura, C., Spanagel, R., Henn, F.A., et al. Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav Pharmacol. 2005;16:267–70.CrossRefGoogle ScholarPubMed
Scott-McKean, J.J., Wenger, G.R., Tecott, L.H., et al. 5-HT1A Receptor null mutant mice responding under a differential – reinforcement-of-low-rate 72-second schedule of reinforcement. Open Neuropsychopharmacol J. 2008;1:2432.CrossRefGoogle Scholar
Seay, B., Harlow, H.F. Maternal separation in the rhesus monkey. J Nerv Ment Dis. 1965;140:434–41.CrossRefGoogle ScholarPubMed
Shaldubina, A., Einat, H., Szechtman, H., et al. Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm. 2002;109:433–40.CrossRefGoogle ScholarPubMed
Shaltiel, G., Maeng, S., Malkesman, O., et al. Evidence for the involvement of the kainite receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry. 2008;13:858–72.CrossRefGoogle Scholar
Sherman, A.D., Sacquitne, J.L., Petty, F. Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav. 1982;16:449–54.CrossRefGoogle ScholarPubMed
Shink, E., Morissette, J., Sherrington, R., et al. A genome-wide scan points to a susceptibility locus for bipolar disorder on chromosome 12. Mol Psychiatry. 2005;10:545–52.CrossRefGoogle ScholarPubMed
Song, C., Leonard, B.E. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29: 627–47.CrossRefGoogle ScholarPubMed
Vassout, A., Veenstra, S., Hauser, K., et al. NKP608: a selective NK-1 receptor antagonist with anxiolytic-like effects in the social interaction and social exploration test in rats. Regul Pept. 2000;96:716.CrossRefGoogle ScholarPubMed
Vaugeois, J.M., Passera, G., Zuccaro, F., et al. Individual differences in response to imipramine in the mouse tail suspension test. Psychopharmacol. 1997;134:387–91.CrossRefGoogle ScholarPubMed
Vinkers, C.H., Joëls, M., Milaneschi, Y., et al. Exposure across the life span cumulatively increases depression risk and is moderated by neuroticism. Depress Anxiety. 2014;31 (9):737–45.CrossRefGoogle ScholarPubMed
Weiss, J.M., Kilts, C.D. Animal models of depression and schizophrenia. In: Nemeroff, CB, Schatzberg, AF (eds). Textbook of Psychopharmacology (2nd edn). Arlington, VA: American Psychiatric Press; 1998: pp. 88123.Google Scholar
Weiss, J.M., Cierpial, M.A., West, C.H. Selective breeding of rats for high and low motor activity in a swim test: toward a new animal model of depression. Pharmacol Biochem Behav. 1998;1: 4966.CrossRefGoogle Scholar
Willner, P. The validity of animal models of depression. Psychopharmacol. 1984;83:116.CrossRefGoogle ScholarPubMed
Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacol. 1997;134:319–29.Google ScholarPubMed
Willner, P., Muscat, R., Papp, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525–34.CrossRefGoogle ScholarPubMed
Xu, F., Gainetdinov, R.R., Wetsel, W.C., et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci. 2000;3:465–71.CrossRefGoogle ScholarPubMed
Yamada, K., Iida, R., Miyamoto, Y., et al. Neurobehavioral alterations in mice with a targeted deletion of the tumor necrosis factor-α gene: implications for emotional behavior. J Neuroimmunol. 2000;111:131–8.CrossRefGoogle ScholarPubMed
Yoshikawa, T., Watanabe, A., Ishitsuka, Y., et al. Identification of multiple genetic loci linked to the propensity for ‘‘behavioral despair’’ in mice. Genome Res. 2002;12:357–66.CrossRefGoogle Scholar
Young, J.W., Minassian, A., Paulus, M.P., et al. A reverse-translational approach to bipolar disorder: rodent and human studies in the Behavioral Pattern Monitor. Neurosci Biobehav Rev. 2007;31: 882–96.CrossRefGoogle ScholarPubMed
Young, J.W., Henry, B.L., Geyer, M.A. Predictive animal models of mania: Hits, misses and future directions. Br J Pharmacol. 2011;164:1263–84.CrossRefGoogle ScholarPubMed
Zhang, D., Cheng, L., Qian, Y., et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry. 2009;14:376–80.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×