Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T22:11:36.704Z Has data issue: false hasContentIssue false

Chapter 34 - Magnetic resonance spectroscopy in seizure disorders

from Section 5 - Seizure disorders

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

The official International League Against Epilepsy classification divides epilepsy into generalized and partial (focal or localization related) seizures. In generalized epilepsy (accounting for approximately 40% of cases), the epileptic discharge begins simultaneously over both cerebral hemispheres, presumed to reflect an underlying diffuse abnormality. In focal epilepsies (accounting for the majority of other cases), the discharge begins in a localized region, reflecting a lesion or other focal abnormality.

Brain metabolism in genetic and acquired causes of seizures

Generalized seizures appear to be largely inherited, whereas partial seizures are principally acquired. While this is broadly true, focal epilepsies may also have a genetic background, and generalized epilepsies may also have coexisting developmental abnormalities. Recently, there has been progress in identifying specific inherited epilepsies and finding genetic linkages and genetic defects. The first gene found was a missense mutation affecting the γ2-subunit of the neuronal nicotinic acetylcholine receptor. It was discovered in patients with autosomal dominant nocturnal frontal lobe epilepsy a focal epilepsy first described in 1994. Other known epilepsy, genes include mutations affecting ion channels, such as potassium channels (KCNQ2 and KCNQ3) and sodium channels (SCN1B), [6,7] or the γ-aminobutyric acid (GABA)-A receptor.[8] The mutation in the GABAA receptor γ2-subunit is particularly interesting, as it was found in a family with childhood absence epilepsy and febrile convulsions. For the common inherited epilepsies, such as childhood absence epilepsy, the inheritance is complex, and other factors influence the expression of disease.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 526 - 545
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkovic, SF, Howell, Ra, Hay, DA, Hopper, JLEpilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol 1998; 43: 435–445.CrossRefGoogle ScholarPubMed
Roll, P, Szepetowski, P.Epilepsy and ionic channels. Epilep Dis 2002; 4: 165–172.Google ScholarPubMed
Scheffer, IE, Bhatia, KP, Lopes-Cendes, I, et al. Autosomal dominant frontal epilepsy misdiagnosed as sleep disorder. Lancet 1994; 343: 515–517.CrossRefGoogle ScholarPubMed
Steinlein, OK, Mulley, JC, Propping, P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995; 11: 201–203.CrossRefGoogle Scholar
Biervert, C, Schroeder, BC, Kubisch, C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998; 279: 403–406.CrossRefGoogle ScholarPubMed
Scheffer, IE, Berkovic, SF.Generalized epilepsy with febrile seizures plus: a genetic disorder with heterogeneous clinical phenotypes. Brain 1997; 120: 479–490.CrossRefGoogle ScholarPubMed
Wallace, RH, Wang, DW, Singh, R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel B1 subunit gene SCN1B. Nat Genet 1998; 19: 366–370.CrossRefGoogle Scholar
Wallace, RH, Marini, C, Petrou, S, et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001; 28: 49–52.CrossRefGoogle Scholar
Engel, JJ. Seizures and Epilepsy. Philadelphia, PA: Davis, 1989.Google ScholarPubMed
Lerman, P.Benign childhood epilepsy with centro temporal spikes. Epilepsy: A Comprehensive Textbook. Philadelphia, PA: Lippincott-Raven, 1997, pp. 2307–2314.Google Scholar
Berkovic, SF, McIntosh, A, Howell, RA, et al. Familial temporal lobe epilepsy: a common disorder identified in twins. Ann Neurol 1996; 40: 227–235.CrossRefGoogle ScholarPubMed
Rayboud, C, Guye, M, Mancini, J, Girard N. Neuroimaging of epilepsy in children. Magn Reson Imaging Clin N Am 2001; 9: 121–147.Google Scholar
Ruggieri, PM, Najm, IM. MRimaging in epilepsy. Neurol Clin 2001; 19: 477–489.CrossRefGoogle ScholarPubMed
Wright, NB.Imaging in epilepsy: a pediatric perspective. Br J Radiol 2001; 74: 575–589.CrossRefGoogle Scholar
Jackson, GD, Berkovic, SF, Duncan, JS, Connelly A. Optimizing the diagnosis of hippocampal sclerosis using magnetic resonance imaging. AJNR Am J Neuroradiol 1993; 14: 753–762.Google Scholar
Bradley, WG, Shey RB. MR imaging evaluation of seizures. Radiology 2000; 214: 651–656.CrossRefGoogle ScholarPubMed
Briellmann, RS, Mitchell, LA, Waites, AB, et al. Correlation between language organization and diffusion tensor abnormalities in refractory partial epilepsy. Epilepsia 2003; 44: 1541–1545.CrossRefGoogle ScholarPubMed
Luat, AF, Chugani HT. Molecular and diffusion tensor imaging of epileptic networks. Epilepsia 2008; 49 (Suppl 3): 15–22.CrossRefGoogle ScholarPubMed
Bernasconi, A, Bernasconi, N, Caramanos, Z, et al. T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage 2000; 12: 739–746.CrossRefGoogle ScholarPubMed
Powell, HW, Parker, GJ, Alexander, DC, et al. Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. Neuroimage 2006; 32: 388–399.CrossRefGoogle ScholarPubMed
Berkovic, SF, McIntosh, AM, Kalnins, RM, et al. Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology 1995; 45: 1358–1363.CrossRefGoogle ScholarPubMed
Jackson, GD, Berkovic, SF, Tress, BM, et al. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging. Neurology 1990; 40: 1869–1875.CrossRefGoogle ScholarPubMed
Graham, D, Lantos, P. (eds.) Greenfield’s Neuropathology, 6th edn. London: Arnold, 1997.
Engel, JJ. Outcome with respect to seizures. In Surgical Treatment of the Epilepsies, ed. Engel JJ. New York: Raven Press, 1987, pp. 553–571.Google Scholar
Briellmann, RS, Kalnins, RM, Berkovic, SF, Jackson, GD.Hippocampal pathology in refractory TLE: T2-weighted signal change reflects dentate gliosis. Neurology 2002; 58: 265–271.CrossRefGoogle Scholar
Jack, CR.MRI-based hippocampal volume measurements in epilepsy. Epilepsia 1994; 35(Suppl 6): S21–S29.CrossRefGoogle ScholarPubMed
Briellmann, RS, Jackson, GD, Mitchell, LA, et al. Occurrence of hippocampal sclerosis: is one hemisphere or gender more vulnerable?Epilepsia 1999; 40: 1816–1820.CrossRefGoogle ScholarPubMed
Kälviôinen R, Partanen K, Aeikiä, M, et al. MRI-based hippocampal volumetry and T2 relaxometry: correlation to verbal memory performance in newly diagnosed epilepsy patients with left-sided temporal lobe focus. Neurology 1997; 48: 286–287.CrossRefGoogle Scholar
Eberhardt, KE, Stefan, H, Buchfelder, M, et al. The significance of bilateral CSI changes for the postoperative outcome in temporal lobe epilepsy. J Comput Assist Tomogr 2000; 24: 919–926.CrossRefGoogle ScholarPubMed
Suhy, J, Laxer, KD, Capizzano, AA, et al. H MRSI predicts surgical outcome in MRI-negative temporal lobe epilepsy. Neurology 2002; 58: 821–823.CrossRefGoogle ScholarPubMed
Prichard, JW, Alger, JR, Behar, KL, Petroff, OA, Shulman, RG. Cerebral metabolic studies in vivo by 31P NMR. Proc Natl Acad Sci USA 1983; 80(9): 2748–2751.CrossRefGoogle ScholarPubMed
Petroff, OA, Prichard, JW, Behar, KL, Alger, JR, Shulman, RG.In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann Neurol 1984; 16: 169–177.CrossRefGoogle ScholarPubMed
Prichard, JW, Petroff, OA, Ogino, T, Shulman RG. Cerebral lactate elevation by electroshock: a 1H magnetic resonance. Ann N Y Acad Sci 1987; 508: 54–63.CrossRefGoogle ScholarPubMed
Young, RS, Chen, B, Petroff, OA, et al. The effect of diazepam on neonatal seizure: in vivo 31P and 1H NMR study. Pediatr Res 1989; 25: 27–31.CrossRefGoogle ScholarPubMed
Petroff, OA, Novotny, EJ, Avison, M, et al. Cerebral lactate turnover after electroshock: in vivo measurements by 1H/13C magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1992; 12: 1022–1029.CrossRefGoogle ScholarPubMed
Younkin, DP, Delivoria-Papadopoulos, M, Maris, J, et al. Cerebral metabolic effects of neonatal seizures measured with in vivo 31P NMR spectroscopy. Ann Neurol 1986; 20: 513–519.CrossRefGoogle ScholarPubMed
Matthews, PM, Andermann, F, Arnold, DL.A proton magnetic resonance spectroscopy study of focal epilepsy in humans. Neurology 1990; 40: 985–989.CrossRefGoogle ScholarPubMed
Connelly, A, Jackson, GD, Duncan, JS, King, MD, Gadian, DG.Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 1994; 44: 1411–1417.CrossRefGoogle ScholarPubMed
Danielsen, ER, Ross, B. The clinical significance of metabolites. In Magnetic Resonance Spectroscopy of Neurological Diseases, eds. Danielsen, ER, Ross, B.New York: Marcel Dekker, 1999, pp. 23–42.Google Scholar
Urenjak, J, Williams, SR, Gadian, DG, Noble, M.Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993; 13: 981–989.CrossRefGoogle ScholarPubMed
Petroff, OA, Errante, LD, Kim, JH, Spencer, DD. N-Acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology 2003; 60: 1646–1651.CrossRefGoogle ScholarPubMed
Clark, JB. N-Acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 1998; 20: 271–276.CrossRefGoogle ScholarPubMed
Baslow, MH, Suckow, RF, Sapirstein, V, Hungund, BL.Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J Mol Neurosci 1999; 13: 47–53.CrossRefGoogle ScholarPubMed
Baslow, MH. N-Acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 2003; 28: 941–953.CrossRefGoogle ScholarPubMed
Tallan, HH. Studies on the distribution of N-acetyl-l-aspartic acid in brain. J Biol Chem 1957; 224: 41–45.Google ScholarPubMed
D’Adamo, AF, Jr., Gidez, LI, Yatsu FM. Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exp Brain Res 1968; 5: 267–273.Google ScholarPubMed
Sager, TN, Fink-Jensen, A, Hansen, AJ. Transient elevation of interstitial N-acetylaspartate in reversible global brain ischemia. J Neurochem 1997; 68(2): 675–682.CrossRefGoogle ScholarPubMed
Rael, LT, Thomas, GW, Bar-Or R, Craun, ML, Bar-Or, D.An anti-inflammatory role for N-acetyl aspartate in stimulated human astroglial cells. Biochem Biophys Res Commun 2004; 319: 847–853.CrossRefGoogle ScholarPubMed
Baslow, MH. Evidence supporting a role for N-acetyl-l-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem Int 2002; 40: 295–300.CrossRefGoogle ScholarPubMed
Serles, W, Li, LM, Cendes, F, et al. Time course of postoperative NAA recovery in patients with intractable temporal lobe epilepsy. Neurology 1999; 52(Suppl 2): A18–A19.Google Scholar
Serles, W, Li, LM, Antel, SB, et al. Time course of postoperative recovery of N-acetyl-aspartate in temporal lobe epilepsy. Epilepsia 2001; 42: 190–197.Google ScholarPubMed
Martin, E, Capone, A, Schneider, J, Hennig, J, Thiel, T.Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy?Ann Neurol 2001; 49: 518–521.CrossRefGoogle ScholarPubMed
Boltshauser, E, Schmitt, B, Wevers, RA, et al. Follow-up of a child with hypoacetylaspartia. Neuropediatrics 2004; 35: 255–258.CrossRefGoogle ScholarPubMed
Baslow, MH, Resni, TR. Canavan disease. Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms. J Mol Neurosci 1997; 9: 109–125.CrossRefGoogle ScholarPubMed
Nonaka, M, Kohmura, E, Yamashita, T, et al. Kainic acid-induced seizure upregulates Na(+)/myo-inositol cotransporter mRNA in rat brain. Brain Res Mol Brain Res 1999; 70: 179–186.CrossRefGoogle ScholarPubMed
Hammen, T, Hildebrandt, M, Stadlbauer, A, et al. Non-invasive detection of hippocampal sclerosis: correlation between metabolite alterations detected by (1)H-MRS and neuropathology. NMR Biomed 2008; 21: 545–552.CrossRefGoogle ScholarPubMed
Gullans, SR, Verbalis, JG. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu Rev Med 1993; 44: 289–301.CrossRefGoogle ScholarPubMed
Brand, A, Leibfritz, D, Richter-Landsberg, C.Oxidative stress-induced metabolic alterations in rat brain astrocytes studied by multinuclear NMR spectroscopy. J Neurosci Res 1999; 58: 576–585.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Hetherington, HP, Pan, JW, Chu, WJ, Mason, GF, Newcomer, BR.Biological and clinical MRS at ultra-high field. NMR Biomed 1997; 10: 360–371.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Weber, OM, Verhagen, A, Duc, CO, et al. Effects of vigabatrin intake on brain GABA activity as monitored by spectrally edited magnetic resonance spectroscopy and positron emission tomography. Magn Reson Imaging 1999; 17: 417–425.CrossRefGoogle ScholarPubMed
Burtscher, IM, Holtas, S.Proton magnetic resonance spectroscopy in brain tumours: clinical applications. Neuroradiology 2001; 43: 345–352.CrossRefGoogle ScholarPubMed
Moller-Hartmann, W, Herminghaus, S, Krings T. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2002; 44: 371–381.CrossRefGoogle Scholar
Briellmann, RS, Pell, GS, Wellard, RM et al. MR imaging of epilepsy: state of the art at 1.5 T and potential of 3 T. Epilep Dis 2003; 5: 3–20.Google Scholar
Cendes, F, Caramanos, Z, Andermann, F.Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 1997; 42: 737–746.CrossRefGoogle ScholarPubMed
Najm, IM, Wang, Y, Shedid, D, et al. MRS metabolic markers of seizures and seizure-induced neuronal damage. Epilepsia 1998; 39: 244–250.CrossRefGoogle ScholarPubMed
Meiners, LC, van der Grond, J, van Rijen, PC, et al. Proton magnetic resonance spectroscopy of temporal lobe white matter in patients with histologically proven hippocampal sclerosis. J Magn Res Imaging 2000; 11: 25–31.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Cross, JH, Connelly, A, Jackson, GD.Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy. Ann Neurol 1996; 39: 107–113.CrossRefGoogle ScholarPubMed
Holopainen, IE, Valtonen, ME, Komu, ME, et al. Proton spectroscopy in children with epilepsy and febrile convulsions. Pediatr Neurol 1998; 19: 93–99.CrossRefGoogle ScholarPubMed
Wellard, RM, Briellmann, RS, Prichard, JW, Syngeniotis, A, Jackson, GD.myo-Inositol abnormalities in temporal lobe epilepsy. Epilepsia 2003; 44: 815–821.CrossRefGoogle ScholarPubMed
Connelly, A, van Paesschen, W, Proter, DA, et al. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology 1998; 51: 61–66.CrossRefGoogle ScholarPubMed
Woermann, FG, McLean, MA, Bartlett, PA, et al. Short echo time single-voxel 1H magnetic resonance spectroscopy in magentic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis. Ann Neurol 1999; 45: 369–376.3.0.CO;2-Q>CrossRefGoogle Scholar
Li LM, Dubeau F, Andermann, F, Arnold, DL.Proton magnetic resonance spectroscopic imaging studies in patients with newly diagnosed partial epilepsy. Epilepsia 2000; 41: 825–831.Google ScholarPubMed
Doelken, MT, Stefan, H, Pauli, E, et al. (1)H-MRS profile in MRI positive- versus MRI negative patients with temporal lobe epilepsy. Seizure 2008; 17: 490–497.CrossRefGoogle ScholarPubMed
Simister, RJ, McLean, MA, Salmenpera, TM, Barker, GJ, Duncan, JS.The effect of epileptic seizures on proton MRS visible neurochemical concentrations. Epilepsy Res 2008; 81: 36–43.CrossRefGoogle ScholarPubMed
Ke, Y, Cohen, BM, Lowen, S, et al. Biexponential transverse relaxation (T(2)) of the proton MRS creatine resonance in human brain. Magn Reson Med 2002; 47: 232–238.CrossRefGoogle Scholar
Vielhaber, S, Niessen, HG, Debska-Vielhaber, G, et al. Subfield-specific loss of hippocampal N-acetyl aspartate in temporal lobe epilepsy. Epilepsia 2008; 49: 40–50.CrossRefGoogle ScholarPubMed
Ende, GR, Laxer, KD, Knowlton, RC, et al. Temporal lobe epilepsy: bilateral hippocampal metabolite changes revealed at proton MR spectroscopic imaging. Radiology 1997; 202: 809–817.CrossRefGoogle ScholarPubMed
Margerison, JH, Corsellis, JAN. Epilepsy and the temporal lobes. Brain 1966; 89: 499–530.CrossRefGoogle ScholarPubMed
Babb, TL.Bilateral pathological damage in temporal lobe epilepsy. Can J Neurol Sci 1991; 18: 645–648.CrossRefGoogle ScholarPubMed
Barr, WB, Ashtari, M, Schaul, N.Bilateral reductions in hippocampal volume in adults with epilepsy and a history of febrile seizures. J Neurol Neurosurg Psychiatry 1997; 63: 461–467.CrossRefGoogle Scholar
Quigg, M, Beitram, EH, Jackson, T, Laws, E.Volumetric magnetic resonance imaging evidence of bilateral hippocampal atrophy in mesial temporal lobe epilepsy. Epilepsia 1997; 38: 588–594.CrossRefGoogle ScholarPubMed
Kuzniecky, R, Hugg, J, Hetherington, H, et al. Predictive value of 1H MRSI for outcome in temporal lobectomy. Neurology 1999; 53: 694–698.CrossRefGoogle ScholarPubMed
Arnold, S, Schlaug, G, Niemann, H, et al. Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 1996; 46: 1422–1430.CrossRefGoogle ScholarPubMed
Rabinowicz, AL, Salas, E, Beserra, F, Leiguarda, RC, Vazquez, SE.Changes in regional cerebral blood flow beyond the temporal lobe in unilateral temporal lobe epilepsy. Epilepsia 1997; 38: 1011–1014.CrossRefGoogle ScholarPubMed
Kuzniecky, R, Hugg, JW, Hetherington, H.Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 1998; 51: 66–71.CrossRefGoogle ScholarPubMed
Miller, SP, Li, LM, Cendes, F, et al. Medial temporal lobe neuronal damage in temporal and extratemporal lesional epilepsy. Neurology 2000; 54: 1465–1470.CrossRefGoogle ScholarPubMed
Mueller, SG, Suhy, J, Laxer, KD, et al. Reduced extrahippocampal NAA in mesial temporal lobe epilepsy. Epilepsia 2002; 43: 1210–1216.CrossRefGoogle ScholarPubMed
Fojtikova, D, Brazdil, M, Skoch, A, et al. Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epileptic Disord 2007; 9(Suppl 1): S59–S67.Google ScholarPubMed
Bernasconi, A, Tasch, E, Cendes, F, Li, LM, Arnold, DL.Proton magnetic resonance spectroscopic imaging suggests progressive neuronal damage in human temporal lobe epilepsy. Prog Brain Res 2002; 135: 297–304.CrossRefGoogle ScholarPubMed
Stanley, JA, Cendes, F, Dubeau, F, Andermann, F, Arnold, DL.Proton magnetic resonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia 1998; 39: 267–273.CrossRefGoogle ScholarPubMed
Kikuchi, S, Kubota, F, Akata, T, et al. A study of the relationship between the seizure focus and 1H-MRS in temporal lobe epilepsy and frontal lobe epilepsy. Psychiatry Clin Neurosci 2000; 54: 455–459.CrossRefGoogle ScholarPubMed
Dickson, JM, Wilkinson, ID, Howell, SJ, Griffiths, PD, Grunewald, RA. Idiopathic generalised epilepsy: a pilot study of memory and neuronal dysfunction in the temporal lobes, assessed by magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry 2006; 77: 834–840.CrossRefGoogle ScholarPubMed
Fojtikova, D, Brazdil, M, Horky, J, et al. Magnetic resonance spectroscopy of the thalamus in patients with typical absence epilepsy. Seizure 2006; 15: 533–540.CrossRefGoogle ScholarPubMed
Helms, G, Ciumas, C, Kyaga, S, Savic, I.Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy. J Neurol Neurosurg Psychiatry 2006; 77: 489–494.CrossRefGoogle ScholarPubMed
Haki, C, Gumustas, OG, Bora, I, Gumustas, AU, Parlak, M.Proton magnetic resonance spectroscopy study of bilateral thalamus in juvenile myoclonic epilepsy. Seizure 2007; 16: 287–295.CrossRefGoogle ScholarPubMed
Savic, I, Lekvall, A, Greitz, D, Helms, G.MR spectroscopy shows reduced frontal lobe concentrations of N-acetyl aspartate in patients with juvenile myoclonic epilepsy. Epilepsia 2000; 41: 290–296.CrossRefGoogle ScholarPubMed
Berkovic, SF, Andermann, F, Melanson, D, et al. Hypothalamic hamartomas and ictal laughter: evolution of a characteristic epileptic syndrome and diagnostic value of magnetic resonance imaging. Ann Neurol 1988; 23: 429–439.CrossRefGoogle ScholarPubMed
Cascino, GD, Andermann, F, Berkovic, SF, et al. Gelastic seizures and hypothalamic hamartomas: evaluation of patients undergoing chronic intracranial EEG monitoring and outcome of surgical treatment. Neurology 1993; 43: 747–750.CrossRefGoogle ScholarPubMed
de Graaf, R (ed.). In Vivo NMR Spectroscopy. New York: John Wiley, 1998.Google Scholar
Pauli, E, Eberhardt, WE, Schafer, I, et al. Chemical shift imaging spectroscopy and memory function in temporal lobe epilepsy. Epilepsia 2000; 41: 282–289.CrossRefGoogle ScholarPubMed
Capizzano, AA, Vermathen, P, Laxer, KD, et al. Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. AJNR Am J Neuroradiol 2002; 23: 1359–1368.Google ScholarPubMed
Pan, JW, Kim, JA, Cohen-Gadol, A, et al. Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol Scand 2005; 111: 218–224.CrossRefGoogle ScholarPubMed
Hsu, Y, Schuff, N, Du, A-T, et al. Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J Magn Res Imaging 2002; 16: 305–310.CrossRefGoogle Scholar
Barker, PB, Lin, DDM. In vivo proton MR spectroscopy of the human brain. Prog Nucl Magn Reson Spectrosc 2006; 49: 99–128.CrossRefGoogle Scholar
Cross, JH, Jackson, GD, Neville, BGR, et al. Early detection of abnormalities in partial epilepsy using magnetic resonance. Arch Dis Child 1993; 69: 104–109.CrossRefGoogle ScholarPubMed
Qi, J, Wang, D, Wu, F, Xu, Q. MRI and1H-MRS detects volumetric and metabolic abnormalities of hippocampal sclerosis in temporal lobe epilepsy. J Nanjing Med Uni 2007; 21: 5.Google Scholar
Willmann, O, Wennberg, R, May, T, Woermann, FG, Pohlmann-Eden, B. The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery. A meta-analysis. Epilepsy Res 2006; 71: 149–158.CrossRefGoogle ScholarPubMed
Maudsley, AA, Lin, E, Weiner, MW.Spectroscopic imaging display and analysis. Magn Reson Imaging 1992; 10: 471–485.CrossRefGoogle ScholarPubMed
Provencher, SW.Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672–679.CrossRefGoogle ScholarPubMed
Naressi, A, Couturier, C, Castang, I, de Beer, R, Graveron-Demilly, D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 2001; 31: 269–286.CrossRefGoogle ScholarPubMed
Deelchand, DK, Ugurbil, K, Henry, PG.Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling. Magn Reson Med 2006; 55: 279–286.CrossRefGoogle ScholarPubMed
Hetherington, HP, Pan, JW, Spencer, DD.1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy. J Magn Reson Imaging 2002; 16: 477–483.CrossRefGoogle ScholarPubMed
McLean, MA, Woermann, FG, Barker, GJ, Duncan, JS. Quantitative analysis of short echo time 1H-MRSI of cerebral gray and white matter. Magn Reson Med 2000; 44: 401–411.3.0.CO;2-W>CrossRefGoogle Scholar
Schubert, F, Gallinat, J, Seifert, F, Rinneberg, H.Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 tesla. Neuroimage 2004; 21: 1762–1771.CrossRefGoogle ScholarPubMed
Buchli, R, Duc, CO, Martin, E, Boesiger P. Assessment of absolute metabolite concentrations in human tissue by 31P MRS in vivo. Part I: Cerebrum, cerebellum, cerebral gray and white matter. Magn Reson Med 1994; 32: 447–452.CrossRefGoogle ScholarPubMed
Sappey-Marinier, D, Calabrese, G, Fein, G, et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1992; 12: 584–592.CrossRefGoogle Scholar
Bretscher, MS.Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol 1972; 236: 11–12.CrossRefGoogle ScholarPubMed
Gadian, DG, Radda, GK, Dawson, MJ, Wilke, DRpH Measurements of Cardiac and Skeletal Muscle Using 31P NMR. New York: Liss, 1982.Google Scholar
Bluml, S, Tan, J, Harris, K, et al. Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo. J Comput Assist Tomogr 1999; 23: 272–275.CrossRefGoogle ScholarPubMed
Chu, WJ, Hetherington, HP, Kuzniecky, RI, et al. Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T. Neurology 1998; 51: 472–479.CrossRefGoogle ScholarPubMed
Gadian, DG.NMR and its Application to Living Systems, 2nd edn. New York: Oxford University Press, 1995.Google Scholar
Hugg, JW, Matson, GB, Twieg, DB, et al. Phosphorus-31 MR spectroscopic imaging (MRSI) of normal and pathological human brains. Mag Res Imaging 1992; 10: 227–243.CrossRefGoogle ScholarPubMed
Kuzniecky, R, Elgavish, GA, Hetherington, HP, Evanochko, WT, Pohost, GM. In vivo 31P nuclear magnetic resonance spectroscopy of human temporal lobe epilepsy. Neurology 1992; 42: 1586–1590.CrossRefGoogle ScholarPubMed
Laxer, KD, Hubesch, B, Sappey-Marinier, D, Weiner, MW.Increased pH and inorganic phosphate in temporal seizure foci demonstrated by [31P] MRS. Epilepsia 1992; 33: 618–623.CrossRefGoogle Scholar
van der Grond, J, Gerson, JR, Laxer, KD, et al. Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy. Epilepsia 1998; 39: 527–536.CrossRefGoogle ScholarPubMed
Bluml, S, Moreno-Torres, A, Shic, F, Nguy, CH, Ross, BD. Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed 2002; 15: 1–5.CrossRefGoogle ScholarPubMed
Ross, B, Lin, A, Harris, K, Bhattacharya, P, Schweinsburg, B.Clinical experience with 13C MRS in vivo. NMR Biomed 2003; 16: 358–369.CrossRefGoogle ScholarPubMed
Bluml, S, Moreno, A, Hwang, JH.1-(13)C glucose magnetic resonance spectroscopy of pediatric and adult brain disorders. NMR Biomed 2001; 14: 19–32.CrossRefGoogle ScholarPubMed
Shen, J, Petersen, KF, Behar, KL.Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 1999; 96: 8235–8240.CrossRefGoogle ScholarPubMed
Shen, J.In vivo carbon-13 magnetization transfer effect. Detection of aspartate aminotransferase reaction. Magn Reson Med 2005; 54: 1321–1326.CrossRefGoogle Scholar
Patel, AB, de Graaf, RA, Mason, GF, et al. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab 2004; 24: 972–985.CrossRefGoogle ScholarPubMed
Petroff, OA, Errante, LD, Rothman, DL, Kim, JH, Spencer, DD.Glutamate–glutamine cycling in the epileptic human hippocampus. Epilepsia 2002; 43: 703–710.CrossRefGoogle ScholarPubMed
Pan, JW, Williamson, A, Cavus, I, et al. Neurometabolism in human epilepsy. Epilepsia 2008; 49(Suppl 3): 31–41.CrossRefGoogle ScholarPubMed
Patel, AB, Rothman, DL, Cline, GW.Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition. Brain Res. 2001; 919: 207–220.CrossRefGoogle Scholar
Schnall, MD, Yoshizaki, K, Chance, B, Leigh, JS, Jr. Triple nuclear NMR studies of cerebral metabolism during generalized seizure. Magn Reson Med 1988; 6: 15–23.CrossRefGoogle ScholarPubMed
Wang, Y, Majors, A, Najm, I, et al. Postictal alteration of sodium content and apparent diffusion coefficient in epileptic rat brain induced by kainic acid. Epilepsia 1996; 37: 1000–1006.CrossRefGoogle ScholarPubMed
Boada, FE, Shen, GX, Chang, SY, Thulborn, KR.Spectrally weighted twisted projection imaging: reducing T2 signal attenuation effects in fast three-dimensional sodium imaging. Magn Reson Med 1997; 38: 1022–1028.CrossRefGoogle ScholarPubMed
Eleff, SM, Schnall, MD, Ligetti, L, et al. Concurrent measurements of cerebral blood flow, sodium, lactate, and high-energy phosphate metabolism using 19F, 23Na, 1H, and 31P nuclear magnetic resonance spectroscopy. Magn Reson Med 1988; 7: 412–424.CrossRefGoogle ScholarPubMed
Bachelard, H, Morris, P, Taylor, A, Thatcher, N.High-field MRS studies in brain slices. Magn Reson Imaging 1995; 13: 1223–1226.CrossRefGoogle ScholarPubMed
Strauss, WL, Layton, ME, Hayes, CE, Dager, SR. 19F magnetic resonance spectroscopy investigation in vivo of acute and steady-state brain fluvoxamine levels in obsessive-compulsive disorder. Am J Psychiatry 1997; 154: 516–522.Google ScholarPubMed
Dreher, W, Leibfritz, D. Fast proton spectroscopic imaging with high signal-to-noise ratio: spectroscopic RARE. Magn Reson Med 2002; 47: 523–528.CrossRefGoogle ScholarPubMed
Li, BS, Regal, J, Gonen, O. SNR versus resolution in 3D 1H MRS of the human brain at high magnetic fields. Magn Reson Med 2001; 46: 1049–1053.CrossRefGoogle Scholar
Behar, KL, Rothman, DL, Spencer, DD, Petroff, OAC. Analysis of macromolecule resonances in 1H NMR spectra of human brain. Magn Reson Med 1994; 32: 294–302.CrossRefGoogle ScholarPubMed
Petroff, OAC, Rothman, DL, Behar, KL, Mattson, RH. Initial observations on effect of vigabatrin on in vivo 1H spectroscopic measurement of γ-aminobutyric acid, glutamate, and glutamine in human brain. Epilepsia 1995; 36: 457–464.CrossRefGoogle Scholar
Cendes, F, Stanley, JA, Dubeau, F, Andermann, F, Arnold, DL.Proton magnetic resonance spectroscopic imaging for discrimination of absence and complex partial seizures. Ann Neurol 1997; 41: 74–81.CrossRefGoogle ScholarPubMed
Hill, RA, Chiappa, KH, Huang-Hellinger, F, Jenkins, BGHemodynamic and metabolic aspects of photosensitive epilepsy revealed by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia 1999; 40: 912–920.CrossRefGoogle ScholarPubMed
Li Y, Osorio JA, Ozturk-Isik, E, et al. Considerations in applying 3D PRESS H-1 brain MRSI with an eight-channel phased-array coil at 3 T. Magn Reson Imaging 2006; 24: 1295–1302.CrossRefGoogle ScholarPubMed
Xu, D, Chen, AP, Cunningham, C, et al. Spectroscopic imaging of the brain with phased-array coils at 3.0 T. Magn Reson Imaging 2006; 24: 69–74.CrossRefGoogle ScholarPubMed
Kuzniecky, R, Hetherington, H, Pan, J.Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy. Neurology 1997; 48: 1018–1024.CrossRefGoogle ScholarPubMed
Maton, B, Gilliam, F, Sawrie, S, et al. Correlation of scalp EEG and 1H-MRS metabolic abnormalities in temporal lobe epilepsy. Epilepsia 2001; 42: 417–422.CrossRefGoogle ScholarPubMed
Park, SA, Kim, GS, Lee, SK, et al. Interictal epileptiform discharges relate to 1H-MRS-detected metabolic abnormalities in mesial temporal lobe epilepsy. Epilepsia 2002; 43: 1385–1389.CrossRefGoogle ScholarPubMed
Braun, J, Seyfert, S, Bernarding, J, et al. Volume-selective proton MR spectroscopy for in-vitro quantification of anticonvulsants. Neuroradiology 2001; 43: 211–217.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×