Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T11:15:19.458Z Has data issue: false hasContentIssue false

5 - Invasion ecology of honeyeaters

from Part I - Ancient invaders

Published online by Cambridge University Press:  05 February 2014

Janette A. Norman
Affiliation:
University of Melbourne
Leslie Christidis
Affiliation:
Southern Cross University
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Introduction

The honeyeaters (Meliphagidae) are one of the most speciose and distinctive elements of the Australo-Papuan bird fauna. Following a number of recent taxonomic revisions based on DNA analyses the family currently comprises 50 genera and 182 species (Cracraft and Feinstein 2000; Driskell and Christidis 2004; Ewen et al. 2006; Driskell et al. 2007; Norman et al. 2007; Fleischer et al. 2008; Nyari and Joseph 2011). The family reaches its highest diversity in Australia and New Guinea (125 species), but its distributional limits extend from Bali in the west, northward to Micronesia and eastward through New Zealand to islands of the southwest Pacific (Figure 5.1) (Mathew 2007; Higgins et al. 2008). The honeyeaters have a long evolutionary history in the region being a basal lineage of the oscine passerine radiation that arose in Gondwana prior to 34 Ma (Ericson et al. 2002). Unlike some elements of the Gondwanan biota, honeyeaters are absent from Africa and South America and, with the exception of a single species, do not extend west of Wallace’s Line.

The honeyeaters are an ecologically and morphologically diverse group. They range in size from 9–50 cm; the smallest species being the Myzomela honeyeaters and the largest the yellow wattlebird Anthochaera paradoxa (Daudin) (Higgins et al. 2008). Honeyeaters occur in nearly all habitats of the region and are often the most abundant species. They include both habitat specialists and generalists. The most distinctive morphological feature of the honeyeaters is the presence of a protrusible tongue with a brush-tip, an adaptation for nectar extraction (Paton and Collins 1989). Nectar is a major component of the diet of nearly all honeyeaters although some species are primarily insectivorous (e.g. green-backed honeyeater Glycichaera fallax (Salvadori) or frugivorous (e.g. painted honeyeater, Grantiella picta (Gould), a mistletoe specialist) (Higgins et al. 2008). Most commonly honeyeaters have a diet that consists of nectar supplemented with insects. Honeyeaters share a number of morphological, physiological and behavioural similarities with nectarivorous birds from other regions of the world (sunbirds and hummingbirds) (e.g. Pyke 1980) but they are unrelated (Sibley and Ahlquist 1990); the similarities are a consequence of convergent evolution.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 83 - 102
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, M. R., Fairley, R. A., Martin, D. G., Howe, L. and Atkinson, T. (2008). An outbreak of avian malaria in captive yellowheads/mohua (Mohoua ocrocephala). New Zealand Veterinary Journal 56: 247–251.CrossRefGoogle Scholar
Atkinson, C. T. and LaPointe, D. A. (2009). Introduced avian diseases, climate change, and the future of the Hawaiian honeycreepers. Journal of Avian Medicine and Surgery 23: 53–63.CrossRefGoogle ScholarPubMed
Barker, F. K., Barrowclough, G. F. and Groth, J. G. (2002). A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society of London B 269: 295–308.CrossRefGoogle ScholarPubMed
Barker, R. D. and Vestjens, W. J. M. (1990). Food of Australian Birds 2. Passerines. Lyneham Australia: CSIRO Publishing.Google Scholar
Barrett, G., Silcocks, A., Cunningham, R. and Poulter, R. (2003). The New Atlas of Australian Birds. Hawthorn, Australia: Royal Australasian Ornithologists Union.Google Scholar
Bawa, K. S. (1990). Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics 21: 399–422.CrossRefGoogle Scholar
Beadell, J. S., Gering, E., Austin, J. et al. (2004). Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Molecular Ecology 13: 3829–3844.CrossRefGoogle ScholarPubMed
Beehler, B. M., Pratt, T. K. and Zimmerman, D. A. (1986). Birds of New Guinea. Princeton, NJ: Princeton University Press.Google Scholar
Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. and Gaston, K. J. (2004). Avian extinction and mammalian introductions on oceanic islands. Science 305: 1955–1958.CrossRefGoogle ScholarPubMed
Boles, W. E. (2005). Fossil honeyeaters (Meliphagidae) from the Late Tertiary of Riversleigh, north-western Queensland. Emu 105: 21–26.CrossRefGoogle Scholar
Bond, H. W. and Brown, W. L. (1979). The exploitation of floral nectar in Eucalyptus incrassata by honeyeaters and honeybees. Oecologia 44: 105–111.CrossRefGoogle ScholarPubMed
Bueno, M. G., Lopez, R. P. G., Menezes, R. M. T. et al. (2010). Identification of Plasmodium relictum causing mortality in penguins (Spheniscus magellanicus) from São Paulo Zoo, Brazil. Veterinary Parasitology 173: 123–127.CrossRefGoogle ScholarPubMed
Carpenter, F. L. (1978). A spectrum of nectar-eating communities. American Zoologist 18: 809–819.CrossRefGoogle Scholar
Carstensen, D. W., Sweeny, R., Ehlers, B. and Olesen, J. M (2010). Coexistence and habitat preference of two honeyeaters and a sunbird on Lombok, Indonesia. Biotropica X, 1–6.Google Scholar
Cassoti, G. and Richardson, K. C. (1992). A stereological analysis of kidney structure of honeyeater birds (Meliphagidae) inhabiting either arid or wet environments. Journal of Anatomy 180: 281–288.Google Scholar
Cheke, R. A. and Mann, C. F. (2008). Family Nectarinidae. In Del Hoyo, J., Elliot, A. and Sargatal, J. (eds), Handbook of the Birds of the World. Volume 13. Penduline Tits to True Shrikes. Barcelona, Spain: Lynx Edicions, pp. 196–320.Google Scholar
Christidis, L. and Norman, J. A. (2010). Evolution of the Australasian songbird fauna. Emu 110: 21–31.CrossRefGoogle Scholar
Coates, B. J. (1985). The Birds of Papua New Guinea, Vol. I. Hong Kong: Dove Publications.Google Scholar
Coates, B. J. (1990). The Birds of Papua New Guinea, Vol. II. Hong Kong: Dove Publications.Google Scholar
Coates, B. J., Bishop, K. D. and Gardner, D. (1997). A Guide to the Birds of Wallacea. Sulawesi, the Moluccas and Lesser Sunda Islands, Indonesia. Alderley, Australia: Dove Publications.Google Scholar
Cracraft, J. and Feinstein, J. (2000). What is not a bird of paradise? Molecular and morphological evidence places Macgregoria in the Meliphagidae and the Cnemophilinae near the base of the corvoid tree. Proceedings of the Royal Society of London B 267: 233–241.CrossRefGoogle ScholarPubMed
Cronk, Q. and Ojeda, I. (2008). Bird-pollinated flowers in an evolutionary and molecular context. Journal of Experimental Botany 59: 715–727.CrossRefGoogle Scholar
Diamond, J. M. (1974). Colonization of exploded volcanic islands by birds: the supertramp strategy. Science 184: 803–806.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1975). Assembly of species communities. In Cody, M. L. and Diamond, J. M. (eds). Ecology and Evolution of Communities. Cambridge, MA: Harvard University Press, pp. 342–444.Google Scholar
Diamond, J., Pimm, S. L., Gilpin, M. E. and LeCroy, M. (1989). Rapid evolution of character displacement in myzomelid honeyeaters. American Naturalist 134: 675–708.CrossRefGoogle Scholar
Dickman, C. R. (1996). Overview of the Impacts of Feral Cats on Australian Native Fauna. Canberra, Australia: Australian Nature Conservation Agency.Google Scholar
Dickman, C. R. (2009). House cats as predators in the Australian environment: impacts and management. Human–Wildlife Conflicts 3: 41–48.Google Scholar
Driskell, A. C. and Christidis, L. (2004). Phylogeny and evolution of the Australo-Papuan honeyeaters (Passeriformes, Meliphagidae). Molecular Phylogenetics and Evolution 31: 943–960.CrossRefGoogle Scholar
Driskell, A. C., Christidis, L., Gill, B. J. et al. (2007). A new endemic family of New Zealand passerine birds: adding heat to a biodiversity hotspot. Australian Journal of Zoology 55: 73–78.CrossRefGoogle Scholar
Ericson, P. G., Christidis, L., Cooper, A. et al. (2002). A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London B 269: 235–241.CrossRefGoogle ScholarPubMed
Ewen, J. G., Flux, I. and Ericson, P. G. P. (2006). Systematic affinities of two enigmatic New Zealand passerines of high conservation priority, the hihi or stitchbird Notiomystis cincta and the kokako Callaea scinerea. Molecular Phylogenetic Evolution 40: 281–284.CrossRefGoogle ScholarPubMed
Fleischer, R. C., James, H. F. and Olson, S. L. (2008). Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors. Current Biology 18: 1927–1931.CrossRefGoogle ScholarPubMed
Fleming, T. H. and Muchhala, N. (2008). Nectar-feeding bird and bat niches in two worlds: pantropical comparisons of vertebrate pollination systems. Journal of Biogeography 35: 764–780.CrossRefGoogle Scholar
Ford, H. A. (2001). Why does the distribution of honeyeaters (Meliphagidae) conform so well to Wallaces’s Line? In Metcalfe, I., Smith, J. M. B., Morwood, M. and Davidson, I. (eds), Faunal and Floral Migrations and Evolution in Southeast Asia-Australasia. Lisse, The Netherlands: Swets and Zeitlinger.Google Scholar
Ford, H. A., Paton, D. C. and Forde, N. (1979). Birds as pollinators of Australian plants. New Zealand Journal of Botany 17: 509–519.CrossRefGoogle Scholar
Franklin, D. C. and Noske, R. A. (2000). Nectar sources used by birds in monsoonal north-western Australia: a regional survey. Australian Journal of Botany 48: 461–474.CrossRefGoogle Scholar
Goldingay, R. L. (2005). Is there a diel pattern to nectar secretion in the red bloodwood Corymbia gummifera?Cunninghamia 9: 325–329.Google Scholar
Goldstein, D. L. and Bradshaw, S. D. (1998a). Regulation of water and sodium balance in the field by Australian honeyeater (Aves, Meliphagidae). Physiological Zoology 71: 214–225.CrossRefGoogle Scholar
Goldstein, D. L. and Bradshaw, S. D. (1998b). Renal function in red wattlebirds in response to varying fluid intake. Journal of Comparative Physiology 168: 265–272.CrossRefGoogle Scholar
Grey, M. J., Clarke, M. F. and Loyn, R. H. (1997). Initial changes in avian communities of remnant eucalypt woodlands following a reduction in the abundance of noisy miners, Manorina melanocephala. Wildlife Research 24: 631–648.CrossRefGoogle Scholar
Grey, M. J., Clarke, M. F. and Loyn, R. H. (1998). Influence of the noisy miner Manorina melanocephala on avian diversity and abundance in remnant grey box woodland. Pacific Conservation Biology 4: 55–69.CrossRefGoogle Scholar
Higgins, P. J., Ford, H. A. and Christidis, L. (2008). Family Meliphagidae. In Del Hoyo, J., Elliot, A. and Sargatal, J. (eds), Handbook of the Birds of the World. Volume 13. Penduline Tits to True Shrikes. Barcelona, Spain: Lynx Edicions, pp. 498–691.Google Scholar
Higgins, P. J., Peter, J. M. and Cowling, S. J. (2006). Handbook of Australian New Zealand and Antarctic Birds. Vol. 7. Part B. Dunnock to Starlings. Oxford: Oxford University Press.Google Scholar
Higgins, P. J., Peter, J. M. and Steele, W. K. (2001). Handbook of Australian, New Zealand and Antarctic Birds. Volume 5. Tyrant-flycatchers to Chats. South Melbourne, Victoria, Australia: Oxford University Press.Google Scholar
Hilbert, D. W. (2010). Threats to ecosystems in the wet tropics due to climate change and implications for management. Report to the Marine and Tropical Sciences Research Facility, Canberra. Atherton, Australia: CSIRO Sustainable Ecosystems.Google Scholar
Hughes, A. L. (1999). Differential human impact on the survival of genetically distinct avian lineages. Bird Conservation International 9: 147–154.CrossRefGoogle Scholar
Ishtiaq, F., Beadell, J. S., Baker, A. J. et al. (2005). Prevalence and evolutionary relationships of haematozoan parasites in native versus introduced populations of common myna Actidothetes tristis. Proceedings of the Royal Society, London B 273(1586): 587–594.CrossRefGoogle Scholar
Johnson, S. D. and Nicolson, S. W. (2007). Evolutionary associations between nectar properties and specificity in bird pollination syndromes. Biology Letters 4: 49–52.CrossRefGoogle Scholar
Machado, I. C. and Vogel, S. (2004). The north-east-Brazilian liana, Adenocalymna dichilum (Bignoniaceae) pollinated by bats. Annals of Botany 9: 609–613.CrossRefGoogle Scholar
Markula, A., Hannan-Jones, M. and Csurhes, S. (2009). Pest Animal Risk Assessment: Indian MynaAcridotheres tristis. Queensland, Australia: Department of Employment, Economic Innovation and Development.Google Scholar
Mathew, J. S. (2007). Family Epthianuridae (Australian Chats). In Del Hoyo, J., Elliot, A. and Sargatal, J. (eds), Handbook of the Birds of the World. Volume 12. Picathartes to Tits and Chickadees. Barcelona, Spain: Lynx Edicions, pp. 612–626.Google Scholar
Mayr, E. and Diamond, J. M. (2001). The Birds of Northern Melanesia: Speciation, Ecology, and Biogeography. New York: Oxford University Press.Google Scholar
Mendes, L., Piersma, T., Lecoq, M., Spaans, B. and Ricklefs, R. E. (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109: 396–404.CrossRefGoogle Scholar
Moyle, R. G., Filardi, C. E., Smith, C. E. and Diamond, J. (2009). Explosive Pleistocene diversification and hemispheric expansion of a great ‘speciator’. Proceedings of the National Academy of Sciences of the United States of America 106: 1863–1868.CrossRefGoogle Scholar
Nee, S. and May, R. M. (1997). Extinction and the loss of evolutionary history. Science 278: 692–694.CrossRefGoogle ScholarPubMed
Nicolson, S. W. and Thornburg, R. W. (2007). Nectar chemistry. In Nicolson, S. W., Nepi, M. and Pacini, E. (eds), Nectaries and Nectar. Dordrecht, The Netherlands: Springer, pp. 293–346.CrossRefGoogle Scholar
Norman, J. A., Rheindt, F. E., Rowe, D. L. and Christidis, L. (2007). Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters. Molecular Phylogenetics and Evolution 42: 80–91.CrossRefGoogle ScholarPubMed
Nowak, R. M. (1991). Walker’s Mammals of the World Vol. II, 5th edn. Baltimore, MD: John Hopkins University Press.Google Scholar
Nyari, A. and Joseph, L. (2011). Systematic dismantlement of Lichenostomus improves the basis for understanding relationships within the honeyeaters (Meliphagidae) and historical development of Australo-Papuan bird communities. Emu 111: 202–211.CrossRefGoogle Scholar
Paton, D. C. and Collins, B. G. (1989). Bills and tongues of nectar-feeding birds: a review of morphology, function and performance, with intercontinental comparisons. Australian Journal of Ecology 14: 473–506.CrossRefGoogle Scholar
Powers, D. R. (1992). Effect of temperature and humidity on evaporative water loss in Anna’s hummingbird (Calypte anna). Journal of Comparative Physiology B 162: 74–84.CrossRefGoogle Scholar
Pyke, G. H. (1980). The foraging behaviour of Australian honeyeaters: a review and some comparisons with hummingbirds. Australian Journal of Ecology 5: 343–369.CrossRefGoogle Scholar
Russell, G. J., Brooks, T. M., McKinney, M. M. and Anderson, C. G. (1998). Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12: 1365–1376.CrossRefGoogle Scholar
Saffer, V. M. (2004). Are diel patterns of nectar production and anthesis associated with other floral traits in plants visited by potential bird and mammal pollinators?Australian Journal of Botany 52: 87–92.CrossRefGoogle Scholar
Sanderson, J. G., Diamond, J. M. and Pimm, S. L. (2009). Pairwise co-existence of Bismarck and Solomon landbird species. Evolutionary Ecology Research 11: 771–786.Google Scholar
Schodde, R. and Mason, I. (1999). The Directory of Australian Birds. Passerines. Canberra, Australia: CSIRO Publishing.Google Scholar
Schrenzel, M. D., Maalouf, G. A., Keener, L. L. and Gaffney, P. M. (2003). Molecular characterization of malarial parasites in captive passerine birds. Journal of Parasitology 89: 1025–1033.CrossRefGoogle ScholarPubMed
Sibley, C. G. and Ahlquist, J. E. (1990). Phylogeny and Classification of Birds. New Haven, CT: Yale University Press.Google Scholar
Simpson, K. and Day, N. (2004). Field Guide to the Birds of Australia, 7th edn. Melbourne, Australia: Penguin Group.Google Scholar
Stiles, F. G. (1981). Geographical aspects of bird–flower coevolution with particular reference to Central America. Annals of the Missouri Botanical Garden 68: 323–352.CrossRefGoogle Scholar
Tompkins, D. M and Gleeson, D. M. (2006). Relationship between avian malaria distribution and an exotic invasive mosquito in New Zealand. Journal of the Royal Society of New Zealand 36: 51–62.CrossRefGoogle Scholar
Warner, R. E. (1968). The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70: 101–120.CrossRefGoogle Scholar
Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. and Ollerton, J. (1996). Generalization in pollination systems, and why it matters. Ecology 77: 1043–1060.CrossRefGoogle Scholar
White, C. M. N. and Bruce, M. D. (1986). The Birds of Wallacea (Sulawesi), the Moluccas and Lesser Sunda Islands Indonesia. BOU Check-list No. 7. Tring, UK: British Ornithologists Union.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×