Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T13:13:02.565Z Has data issue: false hasContentIssue false

12 - The development of a climate: an arid continent with wet fringes

from Part I - Ancient invaders

Published online by Cambridge University Press:  05 February 2014

Sandra McLaren
Affiliation:
University of Melbourne
Malcolm W. Wallace
Affiliation:
University of Melbourne
Stephen J. Gallagher
Affiliation:
University of Melbourne
Barbara E. Wagstaff
Affiliation:
University of Melbourne
Anne-Marie P. Tosolini
Affiliation:
University of Melbourne
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Introduction

The Australian continent is large and therefore exhibits a range of very different climatic zones. Broadly, the continent is characterised by arid climatic regimes: four-fifths of the landmass receiving an annual rainfall of less than 600 mm (Figure 12.1) and one-half of the continent receiving less than 300 mm. These arid and semi-arid regions form the greatest proportion of inland Australia, and are fringed by narrow, wet and temperate climatic zones along the southwestern, southern and eastern coastal zones (Figure 12.1). Tropical monsoonal rainfall characterises the northern coastal zones. Compared to other continents on Earth, Australia has by far the lowest average rainfall. This low precipitation rate is coupled with a high evaporation rate meaning that surface water availability is also anomalously low compared to global averages. Average annual temperature also shows significant variation (Figure 12.1) and in most areas there is also a high diurnal variation in temperature.

It is well known, however, that the currently arid areas of inland Australia were significantly wetter in the geological past, from the early Cenozoic (a period of geological time from c. 65 Ma until the present day; Gradstein et al. 2004) until at least the early Miocene (c. 23 Ma) (e.g. Kershaw et al. 1994; Martin 2006). Much of our current knowledge of climate change from the early Cenozoic to the present is deduced from observed variations in the isotopic signature of marine sediments (e.g. deMenocal 1995; Lisiecki and Raymo 2005; Raymo et al. 2006) as well as the distribution, chemistry and palynological assemblages of terrestrial and marine sediments and sedimentary rocks.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 256 - 282
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, R., Lindesay, J. and Parker, D. (1996). El Nino Southern Oscillation and Climatic Variability. Melbourne, Australia: CSIRO Publishing.Google Scholar
Alley, N. F. (1998). Cainozoic stratigraphy, palaeoenvironments and geological evolution of the Lake Eyre Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 144: 239–263.CrossRefGoogle Scholar
Alley, N. F. and Frakes, L. A. (2003). First known Cretaceous glaciation: Livingston Tillite Member of the Cadna-owie Formation, South Australia. Australian Journal of Earth Sciences 50: 139–144.CrossRefGoogle Scholar
An, Z., Bowler, J. M., Opdyke, N. D., Macumber, P. G. and Firman, J. B. (1986). Palaeomagnetic stratigraphy of Lake Bungunnia: Plio-Pleistocene precursor of aridity in the Murray Basin, southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 54: 219–239.Google Scholar
Apthorpe, M. C. (1988). Cenozoic depositional history of the North West Shelf. In Purcell, P. G. and Purcell, R. R. (eds), The North West Shelf Australia: Proceedings of the Petroleum Exploration Society of Australia Symposium. Perth, Australia: Petroleum Exploration Society of Australia, pp. 55–84.Google Scholar
Archer, M., Godthelp, H., Hand, S. J. and Megirian, D. (1989). Fossil mammals of Riversleigh, Northwestern Queensland: preliminary overview of biostratigraphy, correlation and environmental change. Australian Zoologist 25: 29–65.CrossRefGoogle Scholar
Archer, M., Hand, S. J. and Godthelp, H. (1991). Riversleigh: The Story of Animals in Ancient Rainforests of Inland Australia. Kew, Australia : Reed Books.Google Scholar
Barron, E. J. (1983). Warm equable Cretaceous, the nature of the problem. Earth Science Reviews 19: 305–338.CrossRefGoogle Scholar
Barron, E. J. and Peterson, W. H. (1991). The Cenozoic ocean circulation based on ocean General Circulation Model results. Palaeogeography, Palaeoclimatology, Palaeoecology 83: 1–28.CrossRefGoogle Scholar
Beard, J. S. (1977). Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. Journal of Biogeography 4: 111–118.CrossRefGoogle Scholar
Behera, S. K. and Yamagata, T. (2001). Subtropical SST dipole events in the southern Indian ocean. Geophysical Research Letters 28: 327–330.CrossRefGoogle Scholar
Benbow, M. C., Alley, N. F., Callan, R. A. and Greenwood, D. R. (1995). Geological history and palaeoclimate. In Drexel, J. F. and Preiss, W. V. (eds) The Geology of South Australia, Volume 2: The Phanerozoic. Adelaide, Australia: Geological Survey of South Australia Bulletin 54, pp. 208–217.Google Scholar
Bint, A. N. (1981). An early Pliocene assemblage from Lake Tay, south-western Australia, and its phytogeographic implications. Australian Journal of Botany 29: 277–291.CrossRefGoogle Scholar
Bobe, R. and Behrensmeyer, A. K. (2004). The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 399–420.CrossRefGoogle Scholar
Bowler, J. M. (1976). Aridity in Australia: age, origins and expression in aeolian landforms and sediments. Earth Science Reviews 12: 279–310.CrossRefGoogle Scholar
Bowler, J. M. (1982). Aridity in the late Tertiary and Quaternary of Australia. In Barker, W. R. and Greenslade, P. J. M. (eds), Evolution of the Flora and Fauna of Arid Australia. Adelaide, Australia: Peacock Publications, pp. 35–45.Google Scholar
Brown, C. M. and Stephenson, A. E. (1991). Geology of the Murray Basin. Bureau of Mineral Resources Bulletin 235: 430.Google Scholar
Cane, M. A. and Molnar, P. (2001). Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411: 157–162.CrossRefGoogle ScholarPubMed
Chen, X. Y. and Barton, C. E. (1991). Onset of aridity and dune-building in central Australia: sedimentological and magnetostratigraphic evidence from Lake Amadeus. Palaeogeography, Palaeoclimatology, Palaeoecology 84: 55–73.CrossRefGoogle Scholar
Chen, X. Y., Bowler, J. M. and Magee, J. W. (1991). Aeolian landscapes in central Australia: gypsiferous and quartz dune environments from Lake Amadeus. Sedimentology 38: 519–538.CrossRefGoogle Scholar
Chen, X. Y., Bowler, J. M. and Magee, J. W. (1993). Late Cenozoic stratigraphy and hydrologic history of Lake Amadeus, a central Australian playa. Australian Journal of Earth Sciences 40: 1–14.CrossRefGoogle Scholar
Clark, P. U., Archer, D., Pollard, D. et al. (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews 25: 3150–3184.CrossRefGoogle Scholar
Clarke, J. D. A. (1993). Stratigraphy of the Lefroy and Cowan Palaeodrainages, Western Australia. Journal of the Royal Society of Western Australia 76: 15–22.Google Scholar
Clarke, J. D. A. and Pillans, B. (2002). Comment on ‘Onset of aridity in southern Western Australia: a preliminary palaeomagnetic appraisal’ by Zheng et al. [Global and Planetary Change 18 (1998) 175–187]. Global and Planetary Change 32: 279–282.CrossRefGoogle Scholar
Clarke, L. J. and Jenkyns, H. C. (1999). New oxygen isotope evidence for long-term Cretaceous climatic change in the southern hemisphere. Geology 27(8): 699–702.2.3.CO;2>CrossRefGoogle Scholar
Constantine, A., Chinsamy, A., Vickers-Rich, P. and Rich, T. H. (1998). Periglacial environments and polar dinosaurs. South African Journal of Science 94: 137–141.Google Scholar
Creaser, P. (1997). Oligocene–Miocene sediments of Riversleigh: the potential significance of topography. Memoirs of the Queensland Museum, 41(2): 303–314.Google Scholar
deMenocal, P. B. (1995). Plio-Pleistocene African Climate. Science 270: 53–59.CrossRefGoogle ScholarPubMed
deMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters 220: 3–24.CrossRefGoogle Scholar
De Lurio, J. L. and Frakes, L. A. (1999). Glendonites as a paleoenvironmental tool: implications for the early Cretaceous high-latitude climates in Australia. Geochimica et Cosmochimica Acta 63(7/8): 1039–1048.CrossRefGoogle Scholar
Dettmann, M. E. (1994). Cretaceous vegetation: the microfossil record. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 143–170.Google Scholar
Dodson, J. R. and Lu, H. Y. (2005). Salinity episodes and their reversal in the late Pliocene of south-western Australia. Palaeogeography, Palaeoecology, Palaeoclimatology 228: 296–304.CrossRefGoogle Scholar
Dodson, J. R. and Macphail, M. K. (2004). Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia. Global and Planetary Change 41: 285–307.CrossRefGoogle Scholar
Dodson, J. R. and Ramrath, A. (2001). An Upper Pliocene lacustrine environmental record from south-western Australia: preliminary results. Palaeogeography, Palaeoclimatology, Palaeoecology 167: 309–320.CrossRefGoogle Scholar
Douglas, R. G. and Savin, S. M. (1975). Oxygen and carbon isotope analyses of Cretaceous and Tertiary foraminifera from the central north Pacific. Initial Report of the Deep Sea Drilling Project Volume XVII, 591–605.
Drexel, J. F. and Preiss, W. V. (eds), (1995). The Geology of South Australia, Volume 2: The Phanerozoic. Adelaide, Australia: Geological Survey of South Australia Bulletin 54.
Edwards, D. L., Roberts, J. D. and Keogh, J. S. (2007). Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. Molecular Ecology 16: 2782–2796.CrossRefGoogle ScholarPubMed
English, P., Spooner, N. A., Chappell, J., Questiaux, D. G. and Hill, N. G. (2001). Lake Lewis basin, central Australia: Environmental evolution and OSL chronology. Quaternary International 83–85: 81–101.CrossRefGoogle Scholar
Evans, R. D., Jefferson, I. F., Kumar, R., O-Hara-Dhand, K. and Smalley, I. J. (2004). The nature and early history of airborne dust from North Africa; in particular the Lake Chad basin. Journal of African Earth Sciences 39: 81–87.CrossRefGoogle Scholar
Feary, D. A., Davies, P. J., Pigram, C. J. and Symonds, P. A. (1991). Climatic evolution and control on carbonate deposition in northeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 89: 341–361.CrossRefGoogle Scholar
Firman, J. B. (1965). Late Cenozoic lacustrine deposits in the Murray Basin, South Australia. Quarterly Notes of the Geological Survey of South Australia 16: 1–2.Google Scholar
Firman, J. B. (1973). Regional stratigraphy of surficial deposits in the Murray Basin and Gambier Embayment. Geological Survey of South Australia Report of Investigations 39.Google Scholar
Fitzsimmons, K. E., Magee, J. W. and Amos, K. J. (2009). Characterisation of aeolian sediments from the Strzelecki and Tirari Deserts, Australia: implications for reconstructing palaeoenvironmental conditions. Sedimentary Geology 218: 61–73.CrossRefGoogle Scholar
Frakes, L. A. and Krassay, A. A. (1992). Discovery of probable ice-rafting in the Late Mesozoic of the Northern Territory and Queensland. Australian Journal of Earth Sciences 39: 115–119.CrossRefGoogle Scholar
Frakes, L. A., Francis, J. E. and Syktus, J. I. (1992). Climate Modes of the Phanerozoic: The History of the Earth’s Climate over the Past 600 Million Years. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fujioka, T., Chappell, J., Fifield, L. K. and Rhodes, E. J., (2009). Australian desert dune fields initiated with Pliocene–Pleistocene global climatic shift. Geology 37: 51–54.CrossRefGoogle Scholar
Fujioka, T., Chappell, J., Honda, M. et al. (2005). Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne-10Be. Geology 33: 993–996.CrossRefGoogle Scholar
Gallagher, S. J. and Gourley, T. L. (2007). Revised Oligo-Miocene stratigraphy of the Murray Basin, southeast Australia. Australian Journal of Earth Sciences 54: 837–849.CrossRefGoogle Scholar
Gallagher, S. J. and Holdgate, G. (2000). The palaeogeographic and palaeoenvironmental evolution of a Palaeogene mixed carbonate-siliciclastic cool-water succession in the Otway Basin, Southeast Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 156: 19–50.CrossRefGoogle Scholar
Gallagher, S. J., Greenwood, D. R., Taylor, D. et al. (2003). The Pliocene climatic and environmental evolution of southeastern Australia: evidence from the marine and terrestrial realm. Palaeogeography, Palaeoclimatology, Palaeoecology 193: 349–382.CrossRefGoogle Scholar
Gallagher, S. J., Smith, A. J., Jonasson, K. et al. (2001). The Miocene palaeoenvironmental and palaeoceanographic evolution of the Gippsland Basin, Southeast Australia: a record of Southern Ocean change. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 53–80.CrossRefGoogle Scholar
Gallagher, S. J., Wagstaff, B. E., Baird, J., Wallace, M. W. and Li, C. L. (2008). Climate variability in the Late Cretaceous greenhouse world. Global and Planetary Change 60: 351–364.CrossRefGoogle Scholar
Gallagher, S. J., Wallace, M. W., Li, C. L. et al. (2009). Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents. Palaeoceanography 24: .CrossRefGoogle Scholar
Gillett, N. P., Kell, T. D. and Jones, P. D. (2006). Regional climate impacts of the Southern Annular Mode. Geophysical Research Letters 33: L23704, .CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G. and Smith, A. G. (2004). A Geologic Time Scale. Cambridge: Cambridge University Press.Google Scholar
Gregory, R. T., Douthitt, C. B., Duddy, I. R., Rich, P. V. and Rich, T. H. (1989). Oxygen isotopic composition of carbonate concretions from the lower Cretaceous of Victoria, Australia: implications for the evolution of meteoric waters on the Australian continent in a paleopolar environment. Earth and Planetary Science Letters 92: 27–42.CrossRefGoogle Scholar
Groves, R. H. (1999). Present vegetation types. In Orchard, A. E. (ed.), Flora of Australia, Vol. 1. Melbourne, Australia: ABRS/CSIRO, pp. 369–401.Google Scholar
Hartley, A. J. and Chong, G., (2002). Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America. Geology 30: 43–46.2.0.CO;2>CrossRefGoogle Scholar
Hays, J. D. and Pitman, W. C. (1973). Lithospheric plate motion, sea level changes and climatic and ecological consequences. Nature 246: 18–22.CrossRefGoogle Scholar
Head, M. J. and Gibbard, P. L. (2005). Early-middle Pleistocene transitions: an overview and recommendation for the defining boundary. Geological Society, London, Special Publications 247: 1–18.CrossRefGoogle Scholar
Herczeg, A. L. and Chapman, A. (1991). Uranium-series dating of lake and dune deposits in southeastern Australia: a reconnaissance. Palaeogeography, Palaeoclimatology, Palaeoecology 84: 285–298.CrossRefGoogle Scholar
Hesse, P. P. (1994). The record of continental dust from Australia in Tasman sea sediments. Quaternary Science Reviews 13: 257–272.CrossRefGoogle Scholar
Hesse, P. P and McTainsh, G. H. (2003). Australian dust deposits: modern processes and the Quaternary record. Quaternary Science Reviews 22: 2007–2035.CrossRefGoogle Scholar
Hesse, P. P., Magee, J. W. and van der Kaars, S. (2004). Late Quaternary environments of the Australian arid zone: a review. Quaternary International 118–119: 87–102.CrossRefGoogle Scholar
Hill, R. S. ed., (1994). History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. and Schrag, D. P., (1998). A Neoproterozoic snowball Earth. Science 281: 1342–1346.CrossRefGoogle ScholarPubMed
Holdgate, G. R., Wallace, M. W., Gallagher, S. J., Wagstaff, B. E. and Moore, D. (2008). No mountains to snow on: major post-Eocene uplift of the East Victoria Highlands; evidence from Cenozoic deposits. Australian Journal of Earth Sciences 55: 211–234.CrossRefGoogle Scholar
Holdgate, G. R., McGowran, B., Fromhold, T. et al. (2009). Eocene-Miocene carbon-isotope and floral record from brown coal seams in the Gippsland Basin of southeast Australia. Global and Planetary Change 65: 89–103.CrossRefGoogle Scholar
Howchin, W. (1929). Notes on the geology of the Great Pyap Bend (Loxton) River Murray basin, and remarks on the geological history of the River Murray. Transactions of Royal Society of South Australia 53: 167–195.Google Scholar
Huber, B. T. (1998). Palaeoclimate: Enhanced tropical paradise at the Cretaceous poles. Science 282(5397): 2199–2200.CrossRefGoogle Scholar
Huber, B. T., Hodell, D. A. and Hamilton, C. P. (1995). Middle-late Cretaceous climates of the southern high latitudes: stable isotopic evidence from minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107.2.3.CO;2>CrossRefGoogle Scholar
Kemp, E. M. (1978). Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region. Palaeogeography, Palaeoclimatology, Palaeoecology 24: 169–208.CrossRefGoogle Scholar
Kenley, P. R. (1971). Cenozoic geology of the eastern part of the Gambier Embayment, southwestern Victoria. In Wopfner, H. and Douglas, J. G. (eds), The Otway Basin of Southeastern Australia. Special Bulletin. Victoria, Australia: Geological Surveys of South Australia and Victoria, pp. 89–153.Google Scholar
Kershaw, A. P. (1997). A bioclimatic analysis of early to middle Miocene Brown Coal Floras, Latrobe Valley, south-eastern Australia. Australian Journal of Botany 45: 373–387.CrossRefGoogle Scholar
Kershaw, A. P. and Nanson, G. C., (1993). The last full glacial cycle in the Australian region. Global and Planetary Change 7: 1–9.CrossRefGoogle Scholar
Kershaw, A. P., D’Costa, D. M., Mason, J. R. C. McEwen and Wagstaff, B. E. (1991). Palynological evidence for Quaternary vegetation and environments of mainland southeastern Australia. Quaternary Science Reviews 10: 391–404.CrossRefGoogle Scholar
Kershaw, A. P., Martin, H. A. and Mason, J. C. McEwen (1994). The Neogene: a time of transition. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 299–327.Google Scholar
Kershaw, A. P., Moss, P. and van der Kaars, S. (2003). Causes and consequences of long-term climatic variability on the Australian continent. Freshwater Biology 48: 1274–1283.CrossRefGoogle Scholar
Kidson, J. W. (1988). Indices of the southern hemisphere zonal wind. Journal of Climate 1: 183–194.2.0.CO;2>CrossRefGoogle Scholar
Kulhmann, G., Langereis, C., Munsterman, D. et al. (2006). Chronostratigraphy of Late Neogene sediments in the southern North Sea Basin and palaeoenvironmental interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 239: 426–455.CrossRefGoogle Scholar
Lear, C. J., Elderfield, H. and Wilson, P. A. (2000). Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287: 269–272.CrossRefGoogle ScholarPubMed
Li, Z. X. and Powell, C. McA. (2001). An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Science Reviews 53: 237–277.CrossRefGoogle Scholar
Li, Q. Y., Quilty, P. G., Moss, G. and McGowran, B. (1996). Southern Australian endemic and semi-endemic foraminifera: a preliminary report. Journal of Micropalaeontology 15: 169–186.CrossRefGoogle Scholar
Lisiecki, L. E. and Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003, .Google Scholar
Lyle, M., Barron, J. A., Bralower, T. J. et al. (2008). Pacific ocean and Cenozoic evolution of climate. Review of Geophysics 46: 1–47.CrossRefGoogle Scholar
MacLeod, K. G., Huber, B. T., Pletsch, T. and Röhl, U. (2001). Maastrichtian foraminiferal and paleoceanographic changes on Milankovitch timescales. Paleoceanography 16: 133–154.CrossRefGoogle Scholar
Macphail, M. K. (1997). Late Neogene climates in Australia: fossil pollen- and spore-based estimates in retrospect and prospect. Australian Journal of Botany 45: 425–464.CrossRefGoogle Scholar
Macphail, M. K., Alley, N. F., Truswell, E. M. and Sluiter, I. R. (1994). Early Tertiary vegetation: evidence from spores and pollen. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 188–261.Google Scholar
McBride, J. L. and Nicholls, N. (1983). Seasonal relationships between Australian rainfall and the Southern Oscillation. Monthly Weather Review 111: 1998–2003.2.0.CO;2>CrossRefGoogle Scholar
McEwen Mason, J. R. C. (1991). The late Cenozoic magnetostratigraphy and preliminary palynology of Lake George, New South Wales. In Williams, M. A. J., De Deckker, P. and Kershaw, A. P. (eds), The Cainozoic in Australia: A Re-appraisal of the Evidence. Melbourne, Australia: Geological Society of Australia, pp. 195–209.Google Scholar
McLaren, S. and Wallace, M. W. (2010). Plio-Pleistocene climate change and the onset of aridity in southeastern Australia. Global and Planetary Change 71: 55–72.CrossRefGoogle Scholar
McLaren, S., Wallace, M. W., Pillans, B. et al. (2009). Revised stratigraphy of the Blanchetown Clay, Murray Basin: age constraints on the evolution of megalake Bungunnia. Australian Journal of Earth Sciences 56: 595–604.CrossRefGoogle Scholar
McLaren, S., Wallace, M. W. and Reynolds, T. (2012). Late Pleistocene climatic change and the formation of the modern Murray River, southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318: 114–127.CrossRefGoogle Scholar
Martin, H. A. (1978). Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alcheringa 2: 181–202.CrossRefGoogle Scholar
Martin, H. A. (1989). Evolution of Mallee and its environment. In: Noble, J. C. and Bradstock, R. A. (eds), Mediterranean Landscapes in Australia. Melbourne, Australia: CSIRO, pp. 83–92.Google Scholar
Martin, H. A. (1990). The palynology of the Namba Formation in the Wooltana-1 bore, Callabonna Basin (Lake Frome), South Australia, and its relevance to Miocene grasslands in central Australia. Alcheringa 14: 247–255.CrossRefGoogle Scholar
Martin, H. A. (1993). The palaeovegetation of the Murray Basin, late Eocene to mid Miocene. Australian Systematic Botany 6: 491–531.CrossRefGoogle Scholar
Martin, H. A. (1994). Australian Tertiary phytogeography: evidence from pollen. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 104–142.Google Scholar
Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66: 533–563.CrossRefGoogle Scholar
Martin, H. A. and McMinn, A. (1994). Late Cenozoic vegetation history of north-western Australia, from the palynology of a dee sea core (ODP Site 765). Australian Journal of Botany 42: 95–102.CrossRefGoogle Scholar
Megirian, D. (1992). Interpretation of the Carl Creek Limestone, northwestern Queensland. Records of the Northern Territory Museum of Arts and Sciences 9: 219–248.Google Scholar
Meloro, C., Raia, P. and Carotenuto, F. (2008). Diversity and turnover of Plio-Pleistocene large mammal fauna from the Italian Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 58–64.CrossRefGoogle Scholar
Miller, K. G., Kominz, M. A., Browning, J. V. et al. (2005). The Phanerozoic record of global sea-level change. Science 310: 1293–1298.CrossRefGoogle ScholarPubMed
Miller, K. G., Sugarman, P. J., Browning, J. V. et al. (2003). Late Cretaceous chronology of large, rapid sea-level changes: glacioeustasy during a greenhouse world. Geology 31: 585–588.2.0.CO;2>CrossRefGoogle Scholar
Miller, K. G., Sugarman, P. J., Browning, J. V. et al. (2004). Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain. Geological Society of America Bulletin 116: 368–392.CrossRefGoogle Scholar
Moss, G. and McGowran, B., (2003). Oligocene neritic Foraminifera in southern Australia; spatiotemporal biotic patterns reflect sequence-stratigraphic environmental patterns, Special Publication–Society for Sedimentary Geology 75: 173–199.Google Scholar
Nanson, G. C., Price, D. M. and Short, S. A. (1992). Wetting and drying of Australia over the past 300 ka. Geology 20: 791–794.2.3.CO;2>CrossRefGoogle Scholar
Palombo, M. R., Alberdi, M. T. and Azanza, B. (2009). How did environmental disturbances affect carnivoran diversity? A case study of the Plio-Pleistocene Carnivora of the North-Western Mediterranean. Evolutionary Ecology 23: 569–589.CrossRefGoogle Scholar
Pole, M. S., Hill, R. S., Green, N. and Macphail, M. K. (1993). The Oligocene Berwick Quarry flora: rainforest in a drying environment. Australian Systematic Botany 6: 399–427.CrossRefGoogle Scholar
Pye, K. (1987). Aeolian Dust and Dust Deposits. San Diego, CA: Academic Press.Google Scholar
Quilty, P. G. (1994). The background: 144 million years of Australian palaeoclimate and palaeogeography. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press, pp. 14–43.Google Scholar
Raymo, M. E., Lisiecki, L. E. and Nisancioglu, K. H. (2006). Plio-Pleistocene ice volume, Antarctic climate, and the global ?18O record. Science 313: 492–495.CrossRefGoogle Scholar
Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution 32: 289–322.CrossRefGoogle ScholarPubMed
Rich, P. V., Rich, T. H., Wagstaff, B. E. et al. (1988). Evidence for low temperatures and biologic diversity in Cretaceous high latitudes of Australia. Science 242: 1403–1406.CrossRefGoogle Scholar
Ruddiman, W. F. and Kutzbach, J. E. (1989). Forcing of Late Cenozoic northern hemisphere climate by plateau uplift in Southern Asia and the American West. Journal of Geophysical Research 94: 18 409–18 427.CrossRefGoogle Scholar
Sluiter, I. R. K. (1991). Earth Tertiary vegetation and climates, Lake Eyre region, northeastern South Australia. In Williams, M. A. J., De Deckker, P. and Kershaw, A. P. (eds), The Cenozoic in Australia: A Re-appraisal of the Evidence. Melbourne, Australia: Geological Society of Australia, pp. 99–166.Google Scholar
Smith, M. L., Pillans, B. J. and McQueen, K. G. (2009). Paleomagnetic evidence for periods of intense oxidative weathering, McKinnons mine, Cobar, New South Wales. Australian Journal of Earth Sciences 56: 201–212.CrossRefGoogle Scholar
Sniderman, J. M. K., Pillans, B., O’Sullivan, P. B. and Kershaw, A. P. (2007). Climate and vegetation in southeastern Australia respond to southern hemisphere insolation forcing in the late Pliocene–early Pleistocene. Geology 35: 41–44.CrossRefGoogle Scholar
Specht, R. L. and Specht, A. (2002). Australian Plant Communities: Dynamics of Structure, Growth and Biodiversity, 2nd edn. Oxford: Oxford University Press.Google Scholar
Stanley, S. M. (1992). An ecological theory for the origin of Homo. Palaeobiology 18, 237–257.CrossRefGoogle Scholar
Stephenson, A. E. (1986). Lake Bungunnia – A Plio-Pleistocene megalake in southern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 57: 137–156.CrossRefGoogle Scholar
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A. et al. (2004). Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography, 19, PA4027, .CrossRefGoogle Scholar
Travouillon, K. J., Legendreb, S., Archera, M. and Hand, S. J. (2009). Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: Implications for Oligo-Miocene climate change in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 276: 24–37.CrossRefGoogle Scholar
Truswell, E. M. and Harris, W. K. (1982). The Cenozoic palaeobotanical record in arid Australia: fossil evidence for the origins of an arid-adapted flora. In Barker, W. R. and Greenslade, P. J. M. (eds), Evolution of the Flora and Fauna of Arid Australia. Adelaide, Australia: Peacock Publications, pp. 67–76.Google Scholar
Vizcaino, S. F., Farina, R. A., Zarate, M. A., Bargo, M. S. and Schultz, P. (2004). Palaeoecological implications of the mid-Pliocene faunal turnover in the Pampean Region (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 213: 101–113.CrossRefGoogle Scholar
Wagstaff, B. E., Kershaw, A. P., O’Sullivan, P. B., Harle, K. J. and Edwards, J. (2001). An Early to Middle Pleistocene palynological record from the volcanic crater of Pejark Marsh, Western Plains of Victoria, southeastern Australia. Quaternary International 83–85: 211–232.CrossRefGoogle Scholar
Webb, J. A. and Golding, S. A. (1998). Geochemical mass-balance and oxygen-isotope constraints on silcrete formation and its paleoclimatic implications in Southern Australia. Journal of Sedimentary Research 68: 981–993.CrossRefGoogle Scholar
Weissert, H. and Erba, E. (2004). Volcanism, CO2 and palaeoclimate: a late Jurassic-Early Cretaceous carbon and oxygen record. Journal of the Geological Society 161: 695–702.CrossRefGoogle Scholar
White, S. and Mitchell, M. M. (2000). Palaeoclimates, the influence of continental drift and latitude change on climate, In Birch, W. D. (ed.) The Geology of Victoria. Sydney, Australia: Geological Society of Australia Special Publication 23, pp. 563–572.Google Scholar
Williams, A. A. J. and Stone, R. C. (2009). An assessment of relationships between the Australian subtropical ridge, rainfall variability, and high-latitude circulation patterns. International Journal of Climatology 29: 691–709.CrossRefGoogle Scholar
Wolfe, J. A. and Upchurch, G. R. (1986). Vegetation climate and floral changes at the Cretaceous- Tertiary boundary. Nature 324: 148–152.CrossRefGoogle Scholar
Wynn, J. G. (2004). Influence of Plio-Pleistocene aridification on human evolution: Evidence from paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropology 123: 106–118.CrossRefGoogle ScholarPubMed
Zachos, J., Dickens, G. R. and Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283.CrossRefGoogle ScholarPubMed
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292: 686–693.CrossRefGoogle ScholarPubMed
Zheng, H., Wyrwoll, K-H., Li, Z. and Powell, C. McA. (1998). Onset of aridity in southern Western Australia: a preliminary palaeomagnetic appraisal. Global and Planetary Change 18: 175–187.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×