Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-17T21:29:44.958Z Has data issue: false hasContentIssue false

24 - The Bionic Eye: a review of multielectrode arrays

from Part V - Bionics

Published online by Cambridge University Press:  05 September 2015

Kate Fox
Affiliation:
Royal Melbourne Institute of Technology (RMIT)
Owen Burns
Affiliation:
The Bionics Institute, Australia
David J. Garrett
Affiliation:
The Bionics Institute, Australia
Mohit N. Shivdasani
Affiliation:
The Bionics Institute, Australia
Hamish Meffin
Affiliation:
University of Melbourne
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Introduction

The notion of creating artificial vision using visual prostheses has been well represented though science fiction literature and films. When we think of retinal prostheses, we immediately think of fictional characters like The Terminator scanning across a bar to assess patrons for appropriately fitting clothing, or Star Trek’s Geordi La Forge with his VISOR, a visual instrument and sensory organ replacement placed across his eyes and attached into his temples to provide him with vision. Such devices are no longer farfetched. In the past 20 years, significant research has been undertaken across the globe in the race for a “Bionic Eye”. Advances in Bionic Eye research have come from improvements in the design and fabrication of multielectrode arrays (MEAs) for medical applications. MEAs are already commonplace in medicine with use in applications such as the cochlear device, cardiac pacemakers, and deep brain stimulators where interfacing with neuronal cell populations is required.

The use of MEAs for vision prostheses is currently of significant interest. For the most part, retinal prostheses have dominated the research landscape owing to the ease of access and direct contact to the retinal ganglion nerve cells. However, MEAs are also in use for direct stimulation into the optic nerve [1]. Retinal prostheses bypass the damaged photoreceptor cells within the retina and instead replace the degenerate retina with electrical stimulation to the nerve cells. Using electrical stimulation, stimulated retinal ganglion cells have been shown to elicit a percept in the form of a phosphene in blind patients [2–6]. Accordingly, the two diseases commonly linked to the justification for Bionic Eye research are age-related macular degeneration (AMD) and retinitis pigmentosa (RP), diseases which lead to progressive loss of photoreceptor cells and diseases where the patient has had previous vision and thus exhibits prior visual-brain pathways. At present, there has been no reliable cure for any of the retinal diseases that target the photoreceptor cells, and thus the development of prosthetic devices is a viable clinical treatment option [7–9].

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 294 - 312
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dobelle, W. H., Mladejovsky, M. G., and Girvin, J. P., “Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis,” Science, vol. 183, pp. 440–444, 1974.CrossRefGoogle Scholar
Humayun, M. S., de Juan, E. Jr, Dagnelie, G. et al., “Visual perception elicited by electrical stimulation of retina in blind humans,” Arch. Ophthalmol., vol. 114, no. 1, pp. 40–46, 1996.CrossRefGoogle ScholarPubMed
Humayun, M. S., Dorn, J. D., da Cruz, L. et al., “Interim results from the international trial of Second Sight’s visual prosthesis,” Ophthalmology, vol. 119, no. 4, pp. 779–788, 2012.CrossRefGoogle ScholarPubMed
Zrenner, E., Benav, H., Bruckmann, A. et al., “Electronic implants provide continuous stable percepts in blind volunteers only if the image receiver is directly linked to eye movement,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 4319, 2010.Google Scholar
Zrenner, E., Bartz-Schmidt, K. U., Gekeler, F. et al., “Seeing with subretinal electronic implants: study in ten patients with wireless implant Alpha-IMS,” ARVO Meeting Abstr., vol. 53, no. 6, pp. 6948, 2012.Google Scholar
Zrenner, E., Bartz-Schmidt, K. U., Benav, H. et al., “Subretinal electronic chips allow blind patients to read letters and combine them to words,” Proc. Biol. Sci. Roy. Soc., vol. 278, no. 1711, pp. 1489–1497, 2011.CrossRefGoogle ScholarPubMed
Kusnyerik, A., Karacs, K., and Zarandy, A., “Vision restoration and vision chip technologies,” Proc. Computer Sci., vol. 7, pp. 121–124, 2011.CrossRefGoogle Scholar
Smith, A. J., Bainbridge, J. W., and Ali, R. R., “Prospects for retinal gene replacement therapy,” Trends Genet., vol. 25, no. 4, pp. 156–165, 2009.CrossRefGoogle ScholarPubMed
Menzel-Severing, J., “Emerging techniques to treat corneal neovascularisation,” Eye, vol. 26, no. 1, pp. 2–12, 2012.CrossRefGoogle ScholarPubMed
Veraart, C., Wanet-Defalque, M.-C., Gérard, B., Vanlierde, A., and Delbeke, J. J., “Pattern recognition with the optic nerve visual prosthesis,” Artif. Organs, vol. 27, no. 11, pp. 996–1004, 2003.CrossRefGoogle ScholarPubMed
Normann, R. A., “Toward the development of a cortically based visual neuroprosthesis,” J. Neural Eng., vol. 6, no. 3, pp. 035001, 2009.CrossRefGoogle ScholarPubMed
Stieglitz, T., “Development of a micromachined epiretinal vision prosthesis,” J. Neural Eng., vol. 6, no. 6, pp. 065005, 2009.CrossRefGoogle ScholarPubMed
Caspi, A., Dorn, J. D., McClure, K. H. et al., “Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant,” Arch. Ophthalmol., vol. 127, no. 4, pp. 398–401, 2009.CrossRefGoogle ScholarPubMed
Keserue, M., Post, N., Hornig, R. et al., “Long term tolerability of the first wireless implant for electrical epiretinal stimulation,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4226, 2009.Google Scholar
Klauke, S., Goertz, M., Rein, S. et al., “Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans: results from stimulation tests during the EPIRET3 prospective clinical trial,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 1, pp. 449–455, 2011.CrossRefGoogle Scholar
Richard, G., Keserue, M., Hornig, R. et al., “Long-term stability of stimulation thresholds obtained from a human patient with a prototype of an epiretinal retina prosthesis,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4580, 2009.Google Scholar
Vugler, A., Lawrence, J., Walsh, J. et al., “Embryonic stem cells and retinal repair,” Mech. Dev., vol. 124, pp. 807–829, 2007.CrossRefGoogle ScholarPubMed
Donoghue, J. P., “Connecting cortex to machines: recent advances in brain interfaces,” Nature Neurosci., vol. 5, pp. 1085–1088, 2002.CrossRefGoogle ScholarPubMed
Chen, S. C., Suaning, G. J., Morley, J. W. et al., “Simulating prosthetic vision: I. Visual models of phosphenes,” Vision Res. vol. 49, pp. 1493–1506, 2009.CrossRefGoogle ScholarPubMed
Perez Fornos, A., Sommerhalder, J., da Cruz, L. et al., “Temporal properties of visual perception on electrical stimulation of the retina,” Invest. Ophthalmol. Vis. Sci., vol. 53, no. 6, pp. 2720–2731, May, 2012.CrossRefGoogle ScholarPubMed
Wilke, R. G., Greppmaier, U., Stingl, K. et al., “Fading of perception in retinal implants is a function of time and space between sites of stimulation,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 458, April 22, 2011.Google Scholar
Koch, F. H., Nolten, U, Gortz, M, Mokwa, W, “Fabrication and assemble techniques for a 3rd generation wireless epiretinal prosthesis.,” in Proc. of MME 2008, 19th Workshop on Micromachining, Micromechanics and Microsystems, Aachen, Germany, 2008, pp. 365–368.Google Scholar
Feucht, M., Laube, T., Bornfeld, N. et al., “[Development of an epiretinal prosthesis for stimulation of the human retina],” Ophthalmologe, vol. 102, no. 7, pp. 688–691, Jul, 2005.CrossRefGoogle ScholarPubMed
Kelly, S. K., Shire, D. B., Chen, J. et al., “A hermetic wireless subretinal neurostimulator for vision prostheses,” IEEE Trans. Biomed. Eng., vol. 58, no. 22, pp. 3197–3205, 2011.CrossRefGoogle ScholarPubMed
Lorach, H., Marre, O., Sahel, J.-A. et al., “Neural stimulation for visual rehabilitation: Advances and challenges,” J. Physiol. Paris, , 2012.Google ScholarPubMed
Hudak, E. M., Mortimer, J. T., and Martin, H. B., “Platinum for neural stimulation: voltammetry considerations,” J. Neural Eng., vol. 7, pp. 026005, 2010.CrossRefGoogle ScholarPubMed
Agnew, W. F., Yuen, T. G. H., Pudenz, R. H. et al., “Neuropathological effects of intracerebral platinum salt injections,” J. Neuropathol. Exp. Neurol., vol. 36, no. 3, pp. 533–546, 1977.CrossRefGoogle ScholarPubMed
Brummer, S. B., Robblee, L. S., and Hambrecht, F. T., “Criteria for selecting electrodes for electrical-stimulation – theoretical and practical considerations,” Ann. New York Acad. Sci., vol. 405, pp. 159–171, 1983.CrossRefGoogle ScholarPubMed
Brummer, S. B., and Turner, M. J., “Electrochemical considerations for safe electrical-stimulation of nervous-system with platinum-electrodes,” IEEE Trans. Biomed. Eng., vol. 24, no. 1, pp. 59–63, 1977.CrossRefGoogle ScholarPubMed
McHardy, J., Robblee, L. S., Marston, J. M. et al., “Electrical-stimulation with Pt electrodes: 4 factors influencing Pt dissolution in inorganic saline,” Biomaterials, vol. 1, no. 3, pp. 129–134, 1980.CrossRefGoogle Scholar
Cogan, S. F., “Neural stimulation and recording electrodes,” Annu. Rev. Biomed. Eng., vol. 10, pp. 275–309, 2008.CrossRefGoogle ScholarPubMed
Cogan, S. F., Guzelian, A. A., Agnew, W. F. et al., “Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation,” J. Neurosci. Meth., vol. 137, no. 2, pp. 141–150, 2004.CrossRefGoogle ScholarPubMed
Cogan, S. F., Troyk, P. R., Ehrlich, J. et al., “In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes,” IEEE Trans. Biomed. Eng., vol. 52, no. 9, pp. 1612–1614, 2005.CrossRefGoogle ScholarPubMed
Cogan, S. F., Ehrlich, J., Plante, T. D. et al., “Sputtered iridium oxide films for neural stimulation electrodes,” J. Biomed. Mater. Res. B Appl. Biomater., vol. 89B, no. 2, pp. 353–361, 2009.CrossRefGoogle Scholar
Rose, T. L., and Robblee, L. S., “Electrical-stimulation with Pt electrodes: 8 electrolytically safe charge injection limits with 0.2 ms pulses,” IEEE Trans. Biomed. Eng., vol. 37, no. 11, pp. 1118–1120, 1990.CrossRefGoogle Scholar
Beebe, X., and Rose, T. L., “Charge injection limits of activated iridium oxide electrodes with 0.2ms pulses in bicarbonate buffered saline,” IEEE Trans. Biomed. Eng., vol. 35, no. 6, pp. 494–495, 1988.CrossRefGoogle Scholar
Cogan, S. F., Troyk, P. R., Ehrlich, J. et al., “Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes,” IEEE Trans. Biomed. Eng., vol. 53, no. 2, pp. 327–332, 2006.CrossRefGoogle ScholarPubMed
Robblee, L. S., Manguadis, M. J., Lasinky, E. D. et al., “Charge injection properties of thermally-prepared iridium oxide films,” Mat. Res. Soc. Symp. Proc., vol. 55, pp. 303–310, 1986.CrossRefGoogle Scholar
Cogan, S. F., Plante, T. D., Ehrlich, J. et al., “Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes,” Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 4153–4156, 2004.CrossRefGoogle ScholarPubMed
Schmidt, E. M., Hambrecht, F. T., and McIntosh, J. S., “Intra-cortical capacitor electrodes – preliminary evaluation,” J. Neurosci. Meth., vol. 5, no. 1–2, pp. 33–39, 1982.CrossRefGoogle Scholar
Weiland, J. D., Anderson, D. J., and Humayun, M. S., “In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes,” IEEE Trans. Biomed. Eng., vol. 49, no. 12, pp. 1574–1579, 2002.CrossRefGoogle ScholarPubMed
Ganske, G., Slavcheva, E., van Ooyen, A. et al., “Sputtered platinum-iridium layers as electrode material for functional electrostimulation,” Thin Solid Films, vol. 519, no. 11, pp. 3965–3970, 2011.CrossRefGoogle Scholar
Garrett, D. J., Ganesan, K., Stacey, A. et al., “Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications,” J. Neural Eng., vol. 9, no. 1, pp. 016002, 2011.CrossRefGoogle ScholarPubMed
Hadjinicolaou, A. E., Leung, R. T., Garrett, D. J. et al., “Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis,” Biomaterials, vol. 33, no. 24, pp. 5812–5820, 2012.CrossRefGoogle ScholarPubMed
Ganesan, K., Garrett, D. J., Ahnood, A. et al., “An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis,” Biomaterials, vol. 35, no. 3, pp. 908–915, 2014.CrossRefGoogle ScholarPubMed
Green, R. A., Hassarati, R. T., Bouchinet, L. et al., “Substrate dependent stability of conducting polymer coatings on medical electrodes,” Biomaterials, vol. 33, no. 25, pp. 5875–5886, 2012.CrossRefGoogle ScholarPubMed
Green, R. A., Devillaine, F., Dodds, C. et al., “Conducting polymer electrodes for visual prostheses,” in Proc. 32nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Argentina, 2010.Google Scholar
de. Balthasar, C., Patel, S., Roy, A. et al., “Factors affecting perceptual thresholds in epiretinal prostheses,” Investig. Ophthalmol. Visual Sci., vol. 49, no. 6, pp. 2303–2314, 2008.CrossRefGoogle ScholarPubMed
Mahadevappa, M., Weiland, J. D., Yanai, D. et al., “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Trans. Neural Systems Rehab. Eng., vol. 13, no. 2, pp. 201–206, 2005.CrossRefGoogle ScholarPubMed
Yanai, D., Weiland, J. D., Mahadevappa, M. et al., “Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa,” Am. J. Ophthalmo.l, vol. 143, no. 5, pp. 820–827, 2007.CrossRefGoogle ScholarPubMed
Dorn, J. D., Ahuja, A. K., Caspi, A. et al., “The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis,” Arch. Ophthalmol., pp. 1–7, 2012.Google Scholar
Humayun, M. S., Dorn, J. D., Cruz, L. d. et al., “Interim results from the international trial of second sight’s visual prosthesis,” Ophthalmology, no. 119, pp. 779–788, 2012.CrossRefGoogle ScholarPubMed
Fernandes, R, Diniz, B, Ribeiro, R et al., “Artificial vision through neuronal stimulation,” Neurosci. Lett., vol. 519, no. 2, pp. 22–128, 2012.CrossRefGoogle ScholarPubMed
Hornig, R., Laube, T., Walter, P. et al., “A method and technical equipment for an acute human trial to evaluate retinal implant technology,” J. Neural Eng., vol. 2, no. 1, pp. S129–134, 2005.CrossRefGoogle ScholarPubMed
Gekeler, F., Szurman, P., Grisanti, S. et al., “Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs,” Graefe’s Archive Clin. Exp. Ophthalmol., vol. 245, no. 2, pp. 230–241, 2006.CrossRefGoogle Scholar
Albrecht Rothermel, L. L., Aryan, N. P., Fisher, M. et al., “A CMOS chip with active pixel array and specific test features for subretinal implantation,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 290–300, 2009.CrossRefGoogle Scholar
Gekeler, F., Kopp, A., Sachs, H. et al., “Visualisation of active subretinal implants with external connections by high-resolution CT,” Br. J. Ophthalmol., vol. 94, no. 7, pp. 843–847, 2010.CrossRefGoogle ScholarPubMed
Chader, G. J., Weiland, J. D., and Humayun, M. S., “Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis,” Progress in Brain Research, Verhaagen, J., ed. Elsevier, 2009.Google Scholar
Schwarz, M., Ewe, L., Hausschild, R et al., “Single chip CMOS imagers and flexible microelectronic stimulators for a retinal implant system,” Sensors Actuators, no. 83, pp. 40–46, 2000.CrossRefGoogle Scholar
Weiland, J D, Cho, A. K., and Humayun, M., “Retinal prostheses: current clinical results and future needs,” Opthalmology, vol. 118, no. 11, pp. 2227–2237, 2011.CrossRefGoogle ScholarPubMed
Klauke, S., Goertz, M., Rein, S. et al., “Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 1, pp. 449–455, 2010.CrossRefGoogle Scholar
Fujikado, T., Kamei, M., Sakaguchi, H. et al., “Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 7, pp. 4726–4733, 2011.CrossRefGoogle ScholarPubMed
Ohta, J., Tokuda, T., Kagawa, K. et al., “Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS),” J. Neural Eng., vol. 4, no. 1, pp. S85–91, 2007.CrossRefGoogle Scholar
Tokuda, T., Asano, R., Sugitani, S. et al., “In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis,” Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 5791–5794, 2007.Google ScholarPubMed
Rizzo, J. F., Wyatt, J., Loewenstein, J. et al., “Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5355–5361, 2003.CrossRefGoogle ScholarPubMed
Rizzo, J. F., Wyatt, J., Loewenstein, J. et al., “Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5362–5369, 2003.CrossRefGoogle ScholarPubMed
Kelly, S. K., Shire, D. B., Chen, J. et al., “Communication and control system for a 15-channel hermetic retinal prosthesis,” Biomed. Signal Processing Control, vol. 6, no. 4, pp. 356–363, 2011.CrossRefGoogle ScholarPubMed
Kelly, S. K., Shire, D. B., Chen, J. et al., “Realization of a 15-channel hermetically-encased wireless subretinal prosthesis for the blind,” in Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 200–203, 2009.Google ScholarPubMed
Shire, D. B., Kelly, S. K., Chen, J. et al., “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502–2511, 2009.CrossRefGoogle ScholarPubMed
Bionic Vision Australia, “All of a sudden I could see a little flash of light. It was amazing.” [30 August, 2012].
Cicione, R., Shivdasani, M. N., Fallon, J. B. et al., “Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration,” J. Neural Eng., vol. 9, no. 3, pp. 036009, 2012.CrossRefGoogle ScholarPubMed
Shivdasani, M. N., Luu, C. D., Cicione, R. et al., “Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis,” J. Neural Eng., vol. 7, no. 3, pp. 036008, 2010.CrossRefGoogle ScholarPubMed
Villalobos, J., Allen, P. J., McCombe, M. F. et al., “Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma,” Graefe’s Archive Clin. Exp. Ophthalmol., vol. 250, no. 3, pp. 399–407, 2011.CrossRefGoogle ScholarPubMed
Villalobos, J., Nayagam, D. A. X., Allen, P. J. et al., “A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation,” Invest. Ophthalmol. Vis. Sci. vol. 54, no. 5, pp. 3751–3762, 2013.CrossRefGoogle ScholarPubMed
Chow, A. Y., Chow, V. Y., Packo, K. H. et al., “The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa,” Arch. Ophthalmol., vol. 122, no. 4, pp. 460–469, 2004.CrossRefGoogle ScholarPubMed
Seo, J.-M., Kim, S. J., Chung, H. et al., “Biocompatibility of polyimide microelectrode array for retinal stimulation,” Mater. Sci. Eng. C, vol. 24, no. 1–2, pp. 185–189, 2004.CrossRefGoogle Scholar
Zhou, J. A., Woo, S. J., Park, S. I. et al., “A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits,” J. Biomed. Biotechnol., 547428, 2008.Google ScholarPubMed
Lee, S. W., Seo, J.-M., Ha, S. et al., “Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers,” Invest. Ophthalmol. Vis. Sci., vol. 50, no. 12, pp. 5859–5866, 2009.CrossRefGoogle ScholarPubMed
Kim, E. T., Kim, C., Lee, S. W. et al., “Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis,” Invest. Ophthalmol. Vis. Sci., vol. 50, no. 9, pp. 4337–4341, 2009.CrossRefGoogle ScholarPubMed
Schuettler, M., Stiess, S., King, B. V. et al., “Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil,” J. Neural Eng., vol. 2, no. 1, pp. S121–8, 2005.CrossRefGoogle ScholarPubMed
Ganesan, K., Stacey, A., Meffin, H. et al., “Diamond penetrating electrode array for epi-retinal prosthesis,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 6757–6760, 2010.Google ScholarPubMed
Weiland, J. D., Liu, W, and Humayun, M. S., “Retinal prosthesis,” Annu. Rev. Biomed. Eng., vol. 7, pp. 361–401, 2005.CrossRefGoogle ScholarPubMed
Stieglitz, T., Haberer, W., Lau, C. et al., “Development of an inductively coupled epiretinal visual prosthesis,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 4178–4181, 2004.CrossRefGoogle Scholar
Bokkon, I., “Phosphene phenomenon: A new concept,” BioSystems, vol. 92, pp. 168–174, 2008.CrossRefGoogle ScholarPubMed
Walker, J., “The amateur scientist: about phosphenes: patterns that appear when the eyes are closed,” Scient. Am., vol. 244, pp. 142–152, 1981.CrossRefGoogle Scholar
Nanduri, D., Fine, I., Horsager, A. et al., “Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation,” Invest. Ophthalmol. Vis. Sci., vol. 53, no. 1, pp. 205–214, Jan, 2012.CrossRefGoogle ScholarPubMed
Humayun, M. S., de Juan, Jr. E., Weiland, J. D. et al., “Pattern electrical stimulation of the human retina,” Vision Res., vol. 39, no. 15, pp. 2569–2576, Jul, 1999.CrossRefGoogle ScholarPubMed
McMahon, M. J., Dorn, J. D., Ahuja, A. K. et al., “The Argus II retinal prosthesis enables blind subjects to localize objects,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4589, 2009.Google Scholar
Ahuja, A. K., Dorn, J. D., Caspi, A. et al., “The Argus II retinal prosthesis enables blind subjects to identify the direction of motion,” ARVO Meeting Abstr., vol. 50, no. 5, pp. 4590, 2009.Google Scholar
Ahuja, A. K., Dorn, J. D., Caspi, A. et al., “Subjects implanted with the ArgusTM II retinal prosthesis are able to improve performance in a spatial-motor task,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 4322, 2010.Google Scholar
Mohand-Said, S., Caspi, A., Merlini, F. et al., “Comparison of ETDRS, Landolt C, and grating visual acuity tests between sighted volunteers using a pixelized image simulator and blind subjects implanted with the ArgusTm II retinal prosthesis,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 4931, 2011.Google Scholar
Arsiero, M., da Cruz, L., Merlini, F. et al., “Subjects blinded by outer retinal dystrophies are able to recognize shapes using the Argus II retinal prosthesis system,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 4951, 2011.Google Scholar
daCruz, L., Merlini, F., Arsiero, M. et al., “Subjects blinded by outer retinal dystrophies are able to recognize outlined shapes using the Argus(R) II retinal prosthesis system: a comparison with the full shapes recognition task,” ARVO Meeting Abstr., vol. 53, no. 6, pp. 5507, 2012.Google Scholar
Sahel, J. A., da Cruz, L., Hafezi, F. et al., “Subjects blind from outer retinal dystrophies are able to consistently read short sentences using the ArgusTM II retinal prosthesis system,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 3420, 2011.Google Scholar
Dorn, J. D., Ahuja, A. K., Arsiero, M. et al., “The ArgusTM II retinal prosthesis provides complex form vision for a subject blinded by retinitis pigmentosa,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 3020, 2010.Google Scholar
Stanga, P. E., Hafezi, F., Sahel, J. A. et al., “Patients blinded by outer retinal dystrophies are able to perceive color using the Argus™ II retinal prosthesis system,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 4949, 2011.Google Scholar
Stanga, P. E., Sahel, J. A., daCruz, L. et al., “Patients blinded by outer retinal dystrophies are able to perceive simultaneous colors using the Argus(R) II retinal prosthesis system,” Arvo Meeting Abstr., vol. 53, no. 6, pp. 6952, 2012.Google Scholar
Nanduri, D., Dorn, J. D., Humayun, M. S. et al., “Percept properties of single electrode stimulation in retinal prosthesis subjects,” ARVO Meeting Abstr., vol. 52, no. 6, pp. 442, 2011.Google Scholar
Richard, G., Keserue, M., Feucht, M. et al., “Visual perception after long-term implantation of a retinal implant,” ARVO Meeting Abstr., vol. 49, no. 5, pp. 1786, 2008.Google Scholar
Richard, G., Hornig, R., Keseru, M. et al., “Chronic epiretinal chip implant in blind patients with retinitis pigmentosa: long-term clinical results,” ARVO Meeting Abstr., vol. 48, no. 5, pp. 666, 2007.Google Scholar
Keseru, M., Feucht, M., Bornfeld, N. et al., “Acute electrical stimulation of the human retina with an epiretinal electrode array,” Acta Ophthalmol, vol. 90, no. 1, pp. e1–8, 2012.CrossRefGoogle ScholarPubMed
Hornig, R., Zehnder, T., Velikay-Parel, M. et al., “The IMI retinal implant system,” in Artificial Sight: Basic Research, Biomedical Engineering, and Clinical Advances. Humayun, M., Weiland, J., Chader, G., Greenbaum, E, ed., pp. 111–128, New York: Springer, 2008.Google Scholar
Wilke, R., Gabel, V. P., Sachs, H. et al., “Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 8, pp. 5995–6003, 2011.CrossRefGoogle ScholarPubMed
Wilke, R., Greppmaier, U., Harscher, A. et al., “Factors affecting perceptual thersholds of subretinal electric stimulation in blind volunteers,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 2026, 2010.Google Scholar
Mokwa, W., Goertz, M., Koch, C. et al., “Intraocular epiretinal prosthesis to restore vision in blind humans,” Conf. Proc. IEEE. Eng. Med. Biol. Soc., vol. 2008, pp. 5790–5793, 2008.Google ScholarPubMed
Roessler, G., Laube, T., Brockmann, C. et al., “Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial,” Invest. Ophthalmol. Vis. Sci., vol. 50, no. 6, pp. 3003–3008, 2009.CrossRefGoogle ScholarPubMed
Kanda, H., Morimoto, T., Fujikado, T. et al., “Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats,” Invest. Ophthalmol. Vis. Sci., vol. 45, no. 2, pp. 560–566, 2004.CrossRefGoogle ScholarPubMed
Fujikado, T., Morimoto, T., Kanda, H. et al., “Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa,” Graefe’s Archive Clin. Exp. Ophthalmol., vol. 245, no. 10, pp. 1411–1419, 2007.CrossRefGoogle ScholarPubMed
Shivdasani, M. N., Fallon, J. B., Luu, C. D. et al., “Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses,” Invest. Ophthalmol. Vis. Sci., vol. 53, no. 10, pp. 6291–6300, 2012.CrossRefGoogle ScholarPubMed
Zhou, J. A., Woo, S. J., Park, S. I. et al., “A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits,” J. Biomed. Biotechnol., vol. 2008, pp. 547428, 2008.CrossRefGoogle ScholarPubMed
Terasawa, Y., Osawa, K., Ozawa, M. et al., “Large-surface-area electrodes based on bulk micromachining,” ARVO Meeting Abstr., vol. 49, no. 5, pp. 3020, 2008.Google Scholar
Terasawa, Y., Tashiro, H., Osawa, K. et al., “Characterization of electrochemically-treated platinum bulk electrodes,” ARVO Meeting Abstr., vol. 51, no. 5, pp. 3033, 2010.Google Scholar
Rizzo, 3rd J. F., “Update on retinal prosthetic research: the Boston Retinal Implant Project,” J. Neuro-ophthalmol. Official J. North Am. Neuro-Ophthalmol. Soc., vol. 31, no. 2, pp. 160–168, 2011.CrossRefGoogle ScholarPubMed
Rizzo, 3rd J. F., Wyatt, J., Loewenstein, J. et al., “Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5362–5369, 2003.CrossRefGoogle ScholarPubMed
Rizzo, J. F., Wyatt, J., Loewenstein, J. et al., “Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 12, pp. 5355–5361, 2003.CrossRefGoogle ScholarPubMed
Rizzo, J. F., Chen, J., Shire, D. B. et al., “Overview of progress on the 256+ channel Boston retinal prosthesis,” ARVO Meeting Abstr., vol. 53, no. 6, pp. 1313, 2012.Google Scholar
Ayton, L. N., Bigney, P. J., Guync, L. H. et al. “First human trial of a novel suprachoroidal retinal prosthesis,” PLoS One vol. 9, e115239, 2014.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×