Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T03:46:03.039Z Has data issue: false hasContentIssue false

Weakly nonlinear theory for a gate-type curved array in waves

Published online by Cambridge University Press:  23 April 2019

S. Michele*
Affiliation:
Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, UK
E. Renzi
Affiliation:
Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, UK
P. Sammarco
Affiliation:
Department of Civil Engineering and Computer Science, Università degli Studi di Roma ‘Tor Vergata’, Via del Politecnico 1, 00133 Roma, Italy
*
Email address for correspondence: s.michele@lboro.ac.uk

Abstract

We analyse the effect of gate surface curvature on the nonlinear behaviour of an array of gates in a semi-infinite channel. Using a perturbation-harmonic expansion, we show the occurrence of new detuning and damping terms in the Ginzburg–Landau evolution equation, which are not present in the case of flat gates. Unlike the case of linearised theories, synchronous excitation of trapped modes is now possible because of interactions between the wave field and the curved boundaries at higher orders. Finally, we apply the theory to the case of surging wave energy converters (WECs) with curved geometry and show that the effects of nonlinear synchronous resonance are substantial for design purposes. Conversely, in the case of subharmonic resonance we show that the effects of surface curvature are not always beneficial as previously thought.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, A. & Mei, C. C. 2005 Linear response of Venice storm gates to incident waves. Proc. R. Soc. Lond. A 461, 17111734.Google Scholar
Alam, M.-R., Liu, Y. & Yue, D. K.-P. 2010 Oblique sub- and super-harmonic bragg resonance of surface waves by bottom ripples. J. Fluid Mech. 643, 437447.Google Scholar
Aranson, I. & Kramer, L. 2002 The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74 (1), 99143.Google Scholar
Babarit, A. 2018 Ocean Wave Energy Conversion. Elsevier.Google Scholar
Babarit, A., Hals, J., Muliawan, M. J., Kurniawan, A., Moan, T. & Krokstad, J. 2012 Numerical benchmarking study of a selection of wave energy converters. Renew. Energy 41, 4463.Google Scholar
Blondeaux, P., Seminara, G. & Vittori, G. 1993a Linear response of the gate system for protection of the Venice lagoon. Note I. Transverse free modes. Rend. Mat. Acc. Lincei A 59, 291298.Google Scholar
Blondeaux, P., Seminara, G. & Vittori, G. 1993b Linear response of the gate system for protection of the Venice lagoon. Note II. Excitation of transverse subharmonic modes. Rend. Mat. Acc. Lincei A 59, 299305.Google Scholar
Blondeaux, P. & Vittori, G. 1995 The nonlinear excitation of synchronous edge waves by a monochromatic wave normally incident on a plane beach. J. Fluid Mech. 301, 251268.Google Scholar
Callan, M., Linton, C. & Evans, D. V. 1991 Trapped modes in two-dimensional waveguides. J. Fluid Mech. 229, 5164.Google Scholar
Dias, F., Renzi, E., Gallagher, S., Sarkar, D., Wei, Y., Abadie, T., Cummins, C. & Rafiee, A. 2017 Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters. Acta Mechanica Sin. 33, 647662.Google Scholar
Drazin, P. G. 2002 Introduction to Hydrodynamic Stability. Cambridge University Press.Google Scholar
Evans, D. V. & Linton, C. M. 1991 Trapped modes in open channels. J. Fluid Mech. 225, 153175.Google Scholar
Evans, D. V. & Porter, R. 1997 Trapped modes about multiple cylinders in a channel. J. Fluid Mech. 339, 331356.Google Scholar
Folley, M., Whittaker, T. & van’t Hoff, J. 2007 The design of small seabed mounted bottom-hinged wave energy converters. In 7th European Wave and Tidal Energy Conference, Porto, PT.Google Scholar
Gu, X. M. & Sethna, P. R. 1987 Resonant surface waves and chaotic phenomena. J. Fluid Mech. 183, 543565.Google Scholar
Guza, R. T. & Bowen, A. J. 1976 Finite amplitude stokes edge waves. J. Mar. Res. 34, 269293.Google Scholar
Hein, S. & Koch, W. 2008 Acoustic resonances and trapped modes in pipes and tunnels. J. Fluid Mech. 605, 401428.Google Scholar
Henry, A., Doherty, K., Cameron, L., Whittaker, T. & Doherty, R. 2010 Advances in the design of the oyster wave energy converter. Marine Renewable and Offshore Wind Energy. Royal Institution of Naval Architects.Google Scholar
Hodge, C. W., Bateman, W., Yuan, Z., Thies, P. & Bruce, T. 2017 Performance analysis of the CCell wave energy device. In 12th European Wave and Tidal Energy Conference, Cork, IE.Google Scholar
Holmes, P. 1986 Chaotic motion in a weakly nonlinear model for surface waves. J. Fluid Mech. 162, 365388.Google Scholar
Jordan, D. W. & Smith, P. 2011 Nonlinear Ordinary Differential Equations. Oxford University Press.Google Scholar
Kirby, J. 1986 A general wave equation for waves over rippled beds. J. Fluid Mech. 162, 171186.Google Scholar
Kuznetsov, N. 1993 Trapped modes of internal waves in a channel spanned by a submerged cylinder. J. Fluid Mech. 254, 113126.Google Scholar
Li, G.2007 Nonlinear resonance of trapped waves on a plane beach. PhD thesis, Massachussetts Institute of Technology.Google Scholar
Li, G. & Mei, C. C. 2003 Natural modes of mobile flood gates. Appl. Ocean Res. 25, 115126.Google Scholar
Li, Y. & Mei, C. C. 2006 Subharmonic resonance of a trapped wave near a vertical cylinder in a channel. J. Fluid Mech. 561, 391416.Google Scholar
Lichter, S. & Chen, J. 1987 Subharmonic resonance of nonlinear cross-waves. J. Fluid Mech. 183, 451465.Google Scholar
Linton, C. & McIver, P. 2001 Mathematical Techniques for Wave/Structure Interactions. Chapman & Hall/CRC.Google Scholar
Linton, C. M. & Ratcliffe, K. 2004 Bound states in coupled guides. I. Two dimensions. J. Math. Phys. 45, 13591379.Google Scholar
Mei, C. C., Hara, T. & Naciri, M. 1988 Note on Bragg scattering of water waves by parallel bars on the seabed. J. Fluid Mech. 186, 147162.Google Scholar
Mei, C. C., Sammarco, P., Chan, E. & Procaccini, C. 1994 Subharmonic resonance of proposed storm gates for Venice lagoon. Proc. R. Soc. Lond. A 444, 257265.Google Scholar
Mei, C. C., Stiassnie, M. & Yue, D. K.-P. 2005 Theory and Application of Ocean Surface Waves. World Scientific.Google Scholar
Michele, S., Renzi, E. & Sammarco, P. 2018a A second-order theory for wave energy converters with curved geometry. In 33rd International Workshop on Water Waves and Floating Bodies, Guidel-Plages, FR.Google Scholar
Michele, S., Sammarco, P. & d’Errico, M. 2016a The optimal design of a flap gate array in front of a straight vertical wall: resonance of the natural modes and enhancement of the exciting torque. Ocean Engng 118, 152164.Google Scholar
Michele, S., Sammarco, P. & d’Errico, M. 2016b Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter. Proc. R. Soc. Lond. A 472, 20160174.Google Scholar
Michele, S., Sammarco, P. & d’Errico, M. 2018b Weakly nonlinear theory for oscillating wave surge converters in a channel. J. Fluid Mech. 834, 5591.Google Scholar
Michele, S., Sammarco, P., d’Errico, M., Renzi, E., Abdolali, A., Bellotti, G. & Dias, F. 2015 Flap gate farm: from Venice lagoon defense to resonating wave energy production. Part 2. Synchronous response to incident waves in open sea. Appl. Ocean Res. 52, 4361.Google Scholar
Miles, J. 1984 Nonlinear Faraday resonance. J. Fluid Mech. 146, 285302.Google Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.Google Scholar
Nayfeh, A. H. & Mook, D. T. 1995 Nonlinear Oscillations. Wiley Classic Library.Google Scholar
Nazarov, S. & Videman, H. 2009 A sufficient condition for the existence of trapped modes for oblique waves in a two-layer fluid. Proc. R. Soc. Lond. A 465, 37993816.Google Scholar
Noad, I. & Porter, R. 2015 Optimisation of arrays of flap-type oscillating wave surge converters. Appl. Ocean Res. 50, 237253.Google Scholar
Porter, R. 2007 Trapped modes in thin elastic plates. Wave Motion 45, 315.Google Scholar
Porter, R. & Evans, D. V. 1999 Rayleigh–Bloch surface waves along periodic gratings and their connection with trapped modes in waveguides. J. Fluid Mech. 386, 233258.Google Scholar
Renzi, E., Abdolali, A., Bellotti, G. & Dias, F. 2014 Wave-power absorption from a finite array of oscillating wave surge converters. Renew. Energy 63, 5568.Google Scholar
Renzi, E. & Dias, F. 2012 Resonant behaviour of an oscillating wave energy converter in a channel. J. Fluid Mech. 701, 482510.Google Scholar
Renzi, E. & Dias, F. 2013 Hydrodynamics of the oscillating wave surge converter in the open ocean. Eur. J. Mech. (B/Fluids) 41, 110.Google Scholar
Renzi, E. & Dias, F. 2014 Motion resonant modes of large articulated damped oscillators in waves. J. Fluid Struct. 49, 705715.Google Scholar
Rockliff, N. 1978 Finite amplitude effects in free and forced edge waves. Math. Proc. Camb. Phil. Soc. 83, 463479.Google Scholar
Sammarco, P., Michele, S. & d’Errico, M. 2013 Flap gate farm: from Venice lagoon defense to resonating wave energy production. Part 1. Natural modes. Appl. Ocean Res. 43, 203213.Google Scholar
Sammarco, P., Tran, H. H., Gottlieb, O. & Mei, C. C. 1997a Subharmonic resonance of Venice gates in waves. Part 2. Sinusoidally modulated incident waves. J. Fluid Mech. 349, 327359.Google Scholar
Sammarco, P., Tran, H. H. & Mei, C. C. 1997b Subharmonic resonance of Venice gates in waves. Part 1. Evolution equation and uniform incident waves. J. Fluid Mech. 349, 295325.Google Scholar
Sarkar, D., Renzi, E. & Dias, F. 2015 Effect of a straight coast on the hydrodynamics and performance of the oscillating wave surge converter. Ocean Engng 105, 2532.Google Scholar
Schmitt, P. & Elsaesser, B. 2015 On the use of OpenFOAM to model oscillating wave surge converters. Ocean Engng 108, 98104.Google Scholar
Utsunomya, T. & Taylor, R. E. 1997 Trapped modes around a row of circular cylinders in a channel. J. Fluid Mech. 339, 331356.Google Scholar
Vittori, G., Blondeaux, P. & Seminara, G. 1996 Waves of finite amplitude trapped by oscillating gates. Proc. R. Soc. Lond. A 452, 791811.Google Scholar
Wilkinson, L., Whittaker, T., Thies, P. R., Day, S. & Ingram, D. 2017 The power-capture of a nearshore, modular, flap-type wave energy converter in regular waves. Ocean Engng 137, 394403.Google Scholar