Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T18:53:19.100Z Has data issue: false hasContentIssue false

A calibration curve for radiocarbon dates

Published online by Cambridge University Press:  02 January 2015

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Antiquity Publications Ltd. 1975 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Dr Malcolm Clark was a research student in the Department of Statistics in the University of Sheffield and when there worked in collaboration with Professor Renfrew. His Ph.D was on the statistical problems of C14 calibration, and he here presents us with an objectively derived calibration curve for radiocarbon dates which will be of great value to all archaeologists. He is now Lecturer in Statistics in the Department of Mathematics, Monash University, Clayton, Victoria, Australia.

References

Baxter, M. S. 1974. Calibration of the radiocarbon time scale, Nature, 249, 93.10.1038/249093a0Google Scholar
Baxter, M. S., and Walton, A.. 1971. Fluctuation of atmospheric carbon-14 during the past century, Proc. Roy. Soc. London, Ser. A, 321, 105–27.Google Scholar
Berger, R., Fergusson, G. J., and Libby, W. F.. 1965. UCLA Radiocarbon Dates IV, Radiocarbon, 7, 336371.10.1017/S0033822200037310Google Scholar
Broecker, W. S., and Olson, E. A.. 1959. Lamont Radiocarbon Measurements VI, Radiocarbon, 1, 111132.10.1017/S0033822200020427Google Scholar
Clark, R. M. 1973. Non-parametric function-fitting. Ph.D. Thesis, University of Sheffield.Google Scholar
Clark, R. M., and Renfrew, C.. 1972. A statistical approach to the calibration of floating tree-ring chronologies using radiocarbon dates, Archaeometry, 14, 519.10.1111/j.1475-4754.1972.tb00046.xGoogle Scholar
Clark, R. M., and Renfrew, C.. 1973. Tree-ring calibration of radiocarbon dates and the chronology of ancient Egypt, Nature, 243, 266–70.10.1038/243266a0Google Scholar
Clark, R. M., and Renfrew, C.. 1974. Reply to Baxter and Aitken, Nature, 249, 94.10.1038/249094b0Google Scholar
Cochran, W. G. 1947. Some consequences when the assumptions for the Analysis of Variance are not satisfied, Biometrics, 3, 2238.10.2307/3001535Google Scholar
Currie, L. A. 1972. The evaluation of radiocarbon measurements and inherent statistical limitations in age resolution, Proc. 8th Int. Conf. on Radiocarbon Dating, Lower Hutt City, 2, 598611.Google Scholar
Damon, P. E., Long, A. and Grey, D. C.. 1970. Arizona radiocarbon dates for dendrochronologically-dated samples. In Radiocarbon Variations and Absolute Chronology (Olsson, I. U., Ed.), 615–18 (Wiley, New York).Google Scholar
Damon, P. E., Long, A. and Wallick, E. I., 1972. Dendrochronological calibration of the carbon-14 time scale, Proc. 8th Int. Conf. on Radiocarbon Dating, Lower Hutt City, 1, 4559.Google Scholar
De Vries, H. 1958. Variations in concentration of radiocarbon with time and location on earth, Koninkl. Nederl. Akademie van Wetensch., Amsterdam, Proc. Ser. B., 61, 94102.Google Scholar
Farmer, J. G., and Baxter, M. S.. 1972. Short-term trends in natural radiocarbon, Proc. 8th Int. Conf. on Radiocarbon Dating, Lower Hutt City, 1, 7585.Google Scholar
Houtermans, J. C. 1971. Geophysical interpretations of bristlecone pine radiocarbon measurements using a method of Fourier analysis for unequally-spaced data. Ph.D. Thesis, University of Berne.Google Scholar
Hultin, E. 1972. The accuracy of radiocarbon dating, Etnologiska Studier, 32, 185–96.Google Scholar
Kigoshi, K. and Hasegawa, H.. 1966. Secular variation of atmospheric radiocarbon concentration and its dependence on geomagnetism, J. Geophys. Res., 71, 1065–71.10.1029/JZ071i004p01065Google Scholar
Kigoshi, K. and Kobayashi, H., 1966. Gakushuin Natural Radiocarbon Measurements V, Radiocarbon, 8, 5473.10.1017/S0033822200000059Google Scholar
Lerman, J. C., Mook, W. G. and Vogel, J. C.. 1970. C-14 in tree-rings from different localities. In Radiocarbon Variations and Absolute Chronology (Olsson, I. U., Ed.), 275301 (Wiley, New York).Google Scholar
Michael, H. N., and Ralph, E. K.. 1972. Discussion of radiocarbon dates obtained from precisely dated Sequoia and Bristlecone Pine samples, Proc. 8th Int. Conf. on Radiocarbon Dating, Lower Hutt City, 1, 2843.Google Scholar
Mielke, J. E., and Long, A.. 1969. Smithsonian Institution Radiocarbon Measurements V, Radiocarbon, 11, 163–82.10.1017/S0033822200064511Google Scholar
Neustupný, E. 1970. The accuracy of radiocarbon dating. In Radiocarbon Variations and Absolute Chronology (Olsson, I. U., Ed.), 2334. (Wiley, New York).Google Scholar
Olsson, I. U., El Gammal, S., and Göksu, Y.. 1969. Uppsala Natural Radiocarbon Measurements IX, Radiocarbon, 11, 515–44.10.1017/S0033822200011401Google Scholar
Ottaway, B. and Ottaway, J. H.. 1972. The Suess calibration curve and archaeological dating, Nature, 239, 512–13.10.1038/239512a0Google Scholar
Ottaway, B. and Ottaway, J. H.. 1974. Irregularities in dendrochronological calibration, Nature, 250, 407–8.10.1038/250407a0Google Scholar
Ralph, E. K, and Michael, H. N.. 1970. masca radiocarbon dates for Sequoia and bristlecone pine samples. In Radiocarbon Variations and Absolute Chronology (Olsson, I. U., Ed.), 619–23 (Wiley, New York).Google Scholar
Ralph, E. K., Michael, H. N. and Han, M. C.. 1973. Radiocarbon dates and reality, masca Newsletter, 9, No. 1, 120.Google Scholar
Rao, C. R. 1965. Linear Statistical Inference and its Applications (Wiley, New York).Google Scholar
Reinsch, C. H. 1967. Smoothing by spline functions, Numer. Math., 10, 177–83.10.1007/BF02162161Google Scholar
Renfrew, C. 1973. Before Civilisation: The Radiocarbon Revolution and Prehistoric Europe. (Jonathan Cape, London).Google Scholar
Renfrew, C. and Clark, R. M.. 1974. Problems of the radiocarbon calendar and its calibration, Archaeometry, 16, 518.10.1111/j.1475-4754.1974.tb01088.xGoogle Scholar
Rice, J. R. 1969. The Approximation of Functions (Vol. 2), (Addison-Wesley, Reading, Mass.).Google Scholar
Stone, M. 1964. Cross-validatory choice and assessment of statistical predictions, J. Roy. Statist. Soc. B, XXXVI, 111–47.Google Scholar
Stuiver, M. 1969. Yale Natural Radiocarbon Measurements IX, Radiocarbon, 11, 545658.10.1017/S0033822200011413Google Scholar
Suess, H. E. 1965. Secular variations of the cosmic-ray produced carbon-14 in the atmosphere and their interpretations, J. Geophys. Res., 70, 59375952.10.1029/JZ070i023p05937Google Scholar
Suess, H. E. 1967. Bristlecone pine calibration of the radiocarbon time scale from 4100 B.C. to 1500 B.C., Proc. Symp. on Radiocarbon Dating and Methods of Low-Level Counting, Monaco, 143151 (I.A.E.A., Vienna).Google Scholar
Suess, H. E. 1970. Bristlecone pine calibration of the radiocarbon time scale from 5400 B.C. to the present. In Radiocarbon Variations and Absolute Chronology (Olsson, I. U., Ed.), 303–12, and Plates I and II (Wiley, New York.)Google Scholar
Wahba, G. and Wold, S.. 1974. A completely-automatic French curve: fitting spline functions by cross validation. Technical Report No. 379, Department of Statistics, University of Wisconsin.Google Scholar
Wendland, W. M., and Donley, D. L.. 1971. Radiocarbon-calendar age relationship, Earth Plan. Sci. Letters, 11, 135–9.10.1016/0012-821X(71)90155-5Google Scholar
Willis, E. H., Tauber, H., and Münnich, K. O., 1960. Variations in the atmospheric radiocarbon concentration over the past 1300 years, Radiocarbon, 2, 14.Google Scholar
Wold, S. 1974. Spline functions in data analysis, Technometrics, 16, 111.10.1080/00401706.1974.10489142Google Scholar