Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T22:32:00.164Z Has data issue: false hasContentIssue false

Panjal Trap chemistry and the birth of Tethys

Published online by Cambridge University Press:  01 May 2009

M. I. Bhat
Affiliation:
Wadia Institute of Himalayan Geology, 15, Municipal Road, Dehra Dun – 248001, India
Syed M. Zainuddin
Affiliation:
Department of Geology, Aligarh Muslim University, Aligarh-202 001, India
A. Rais
Affiliation:
Department of Geology, Aligarh Muslim University, Aligarh-202 001, India

Summary

K2O, TiO2, P205, Zr, Y, Sr and Nb data from the Panjal Traps of Kashmir indicate that the lava erupted in a rift tectonic setting. This is also suggested by the other features of these rocks and volcanic history of the area. The time of eruption represents the initial phase of break-up of the Indian plate from the Siberian plate. This conclusion is in good agreement with the current views on the tectonic evolution of the area.

Type
Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, F. 1979. ‘Gondwanaland.’ The concept that failed The Palaeobotanist 26, 129.Google Scholar
Ahmad, F. & Ahmad, Z. S. 1976. The genesis of the Himalayas: A new approach. Int. Himalayan Geol. Seminar, New Delhi Abstr. no. 107.Google Scholar
Aumento, F. 1969. Diorites from Mid-Atlantic ridge at 45° N Science 165, 1112–13.CrossRefGoogle Scholar
Baker, B. H. 1965. An outline of the geology of the Kenya Rift valley. In Report on the Geology and Geophysics of the East African Rift system, pp. 219. UNESCO, Nairobi.Google Scholar
Bhat, M. I. & Zainuddin, S. M. 1978. Geochemistry of the Panjal Traps on Mount Kayol, Lidderwat, Pahalgam, Kashmir J. geol. Soc. India 19, 403–10.Google Scholar
Bhat, M. I. & Zainuddin, S. M. 1979. Environment of eruption of the Panjal Volcanics Himalayan Geology 8, 728–38.Google Scholar
Bhat, M. I. & Zainuddin, S. M. (in the press). Origin and evolution of the Panjal Volcanics. Himalayan Geology 9.Google Scholar
Brooks, C. K. 1973. Tertiary of Greenland – a volcanic and plutonic record of continental break up. Arctic Geology, Proc. 2nd Int. Symp. on Arctic Geology, San Francisco, California (ed. Pitcher, M. G.). Bull. Am. Assoc. Petrol. Geol. 19, 150–67.Google Scholar
Burrette, C. F. 1972. Plate tectonics and the Hercynian Orogeny Nature, Lond. 239, 155–7.Google Scholar
Cann, J. R. 1969. Spilites from Carlsberg Ridge, Indian Ocean J. Petrology 10, 119.CrossRefGoogle Scholar
Cann, J. R. 1970. Rb, Sr, Y, Zr, Nb in some ocean-floor basaltic rocks Earth Planet Sci. Lett. 10, 711.Google Scholar
Compston, W., McDougall, I. & Heier, K. S. 1968. Geochemical comparison of the Mesozoic basalts of Antarctic, South Africa, South America and Tasmania Geochim. cosmochim. Acta. 32, 129–49.Google Scholar
Condie, K. C. 1977. Effects of altertion on element distribution in Archean tholeiites from the Barberton Greenstone Belt, South Africa. Archacan Geochemistry Symp., Hyderabad, India, Abstr. no. 3.Google Scholar
Condie, K. C., Barsky, C. K. & Mueller, P. A. 1969. Geochemistry of Precambrian diabase dikes from Wyoming Geochim. cosmochin. Acta 33, 1371–88.CrossRefGoogle Scholar
Gass, I. G. & Gibson, I. L. 1969. Structural evolution of the rift zones in the Middle East. Nature, Lond. 221, 926–30.CrossRefGoogle Scholar
Gibson, I. L. 1971. Crustal flexures and flood basalts Tectonophysics 3, 447–59.CrossRefGoogle Scholar
Gunn, B. M. 1966. Modal and elemental variation in Antarctic tholeiites Geochim. cosmochim. Acta 30, 881920.Google Scholar
Hart, R. A. 1970. Chemical exchange between sea-water and deep ocean basalts Earth Planet. Sci. Lett. 9, 269–79.Google Scholar
Hart, S. R. 1969. K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts Earth Planet. Sci. Lett. 6, 295303.Google Scholar
Hart, S. R. 1971. K, Rb, Cs, Sr and Ba contents and Sr isotope ratios of ocean floor basalts Phil. Trans. Soc. Lond A 268, 573–87.Google Scholar
Hart, S. R. 1973. A model for chemical exchange in the basalt seawater system of oceanic layer II Can. J. Earth Sci. 10, 799816.CrossRefGoogle Scholar
Hart, S. R., Glassley, W. E. & Karig, D. E. 1972. Basalts and sea floor spreading behind Moriann Island Arc Earth Planet. Sci. Lett. 15, 1218.CrossRefGoogle Scholar
Heier, K. S., Compston, W. & McDougall, I. 1965. Thorium and uranium concentrations in the differentiated Tasmanian dolerites Geochim. cosmochim. Acta 29, 643–59.Google Scholar
Holmes, A. 1965. Principles of Physical Geology. London: Thomas Nelson.Google Scholar
Illies, J. H. 1970. Graben tectonics in relation to crust-mantle interaction. In Graben Tectonics (ed. Illies, and Mueller, St), pp. 427. Stuttgart: Schweigerbat.Google Scholar
Kamen-Keye, M. 1972. Permian Tethys and Indian Ocean Bull. Am. Ass. Petrol. Geol. 56 (107), 1984–99.Google Scholar
King, L. C. 1967. Morphology of the Earth. Edinburgh: Oliver & Boyd.Google Scholar
McDougall, I. 1962. Differentiation of the Tasmanian dolerites: Red. Hill dolerite-granophyre association Bull. geol. Soc. Am. 73, 279316.Google Scholar
Melson, W. G. & Van Andel, T. H. 1966. Metamorphism in the Mid-Atlantic Ridge: 22° N latitude. Mar. Geol. 4, 165–86.CrossRefGoogle Scholar
Middlemiss, C. S. 1910. Gondwana and related sedimentary systems of Kashmir. Rec. Geol. Surv. India. 37, 286327.Google Scholar
Nakazawa, K. & Kapoor, H. M. 1973. Spilitic pillow lavas in Panjal Traps of Kashmir, India Mem. Fac. Sci. Kyoto University. Ser. Geol. Mineral. 9, 8398.Google Scholar
Osmaston, M. F. 1971. Genesis of ocean ridge median valleys and continental rift valleys Tectonophysics 11, 387405.CrossRefGoogle Scholar
Owen, H. C. 1976. Continental displacement and expansion of the Earth during the Mesozoic and Cenozoic Phil. Trans. R. Soc. Lond. A 281, 223–91.Google Scholar
Pearce, J. A. 1975. Basalt geochemistry used to investigate past tectonic environments on Cyprus Tectonophysics 25, 41–8.Google Scholar
Pearce, J A. (in press). Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolite. Proc. Int. Ophiolite Symp., Cyprus, 1979.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of the basic volcanic rocks determined using trace element analysis Earth Planet. Sci. Lett. 19, 290300.Google Scholar
Pearce, T. H., Gorman, B. E. & Birkett, T. C. 1975. The TiO2 K2O-P205 diagram: a new method of discriminating between oceanic and non-oceanic basalts. Earth Planet. Sci. Lett. 24, 219–26,Google Scholar
Pearce, T. H., Gorman, B. E. & Birkett, T. C. 1977. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks Earth Planet. Sci. Lett. 36, 121–32.Google Scholar
Saggerson, E. P. & Baker, B. H. 1965. Post Jurassic erosion surfaces in eastern Kenya and their deformation in relation to rift structures Q. Jl. geol. Soc. Lond. 121, 5172.CrossRefGoogle Scholar
Sclater, J. G. & Francheteau, J. 1970. The implications of terrestrial heat flow observations on current tectonics and geochemical models of crust and upper mantle of the earth. R. Astron. Soc. Geophys. J. 20, 509–42.CrossRefGoogle Scholar
Susan, E. H. & Thompson, G. 1978(a). Hydothermal alteration of oceanic basalts by seawater. Geochim. cosmochim. Acta 42, 107139.Google Scholar
Susan, E. H. & Thompson, G. 1978(b). Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. cosmochim. Acta 42, 127–39.Google Scholar
Swartz, D. H. & Arden, D. D. 1960. Geological history of the Red Sea area Bull. Am. Ass. Petrol Geol. 44, 1621–37.Google Scholar
Vine, F. J. 1966. Spreading of ocean floor – a new evidence Science, N.Y. 154, 1405–15.Google Scholar
Wager, R. L. & Mitchell, R. L. 1951. The distribution of trace elements during strong fractionation of basic magma – a further study of the Skaergaard intrusion. East. Greenland Geochim. cosmochim. Acta 1, 129208.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1975. Magma type and tectonic setting discrimination using immobile elements Earth. Planet. Sci. Lett. 27, 211–18.Google Scholar