Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T02:39:43.551Z Has data issue: false hasContentIssue false

The determination of citric acid in milk and milk sera

Published online by Cambridge University Press:  01 June 2009

J. C. D. White
Affiliation:
The Hannah Dairy Research Institute, Ayr, Scotland
D. T. Davies
Affiliation:
The Hannah Dairy Research Institute, Ayr, Scotland

Summary

The accuracy of methods that utilize the colour-forming reaction between pyridine, acetic anhydride and citric acid for the determination of citric acid in milk and milk sera has been examined. A method based on that of Saffran & Denstedt (1948), in which a trichloroacetic acid (TCA) filtrate is used, gave values 3–5% low for the citric acid content of both milk and milk ultrafiltrate. The method of Merier & Boulet (1958), in which aqueous samples are analysed, gave an accurate value for the citric acid content of milk. The same technique but applied to aqueous-NaOH samples (Marier & Boulet, 1960) gave values about 7% high for the citric acid content of milk and about 3% high for the citric acid content of ultrafiltrate. However, a method using the technique of Marier & Boulet and TCA filtrate gave accurate values for the citric acid content of both milk and milk ultrafiltrate.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babad, J. & Shtrikman, N. (1951). J. Dairy Res. 18, 72.CrossRefGoogle Scholar
Davies, D. T. (1959). pers. comm. to J. R. Marier.Google Scholar
Davies, D. T. & White, J. C. D. (1959). Proc. 15th int. Dairy Congr. 3, 1677.Google Scholar
Davies, D. T. & White, J. C. D. (1960). J. Dairy Res. 27, 171.Google Scholar
Davies, D. T. & White, J. C. D. (1962). J. Dairy Res. 29, 285.CrossRefGoogle Scholar
Evenhuis, N. (1951). Ned. melk -en Zuiveltijdschr. 5, 201.Google Scholar
Evenhuis, N. (1959). Ned. melk -en Zuiveltijdschr. 13, 250.Google Scholar
Evenhuis, N. (1961). Ned. melk -en Zuiveltijdschr. 15, 219.Google Scholar
Fürth, O. & Herrmann, H. (1935). Biochem. Z. 280, 448.Google Scholar
Grimbleby, F. H. (1956). J. Dairy Res. 23, 229.CrossRefGoogle Scholar
Hartford, C. G. (1962). Analyt. Chem. 34, 426.CrossRefGoogle Scholar
Marier, J. R. & Boulet, M. (1958). J. Dairy Sci. 41, 1683.CrossRefGoogle Scholar
Marier, J. R. & Boulet, M. (1959). J. Dairy Sci. 42, 1885.Google Scholar
Marier, J. R. & Boulet, M. (1960). J. Dairy Sci. 43, 1414.Google Scholar
Marier, J. R., Boulet, M. & Rose, D. (1961). J. Dairy Sci. 44, 359.Google Scholar
Murthy, G. K. & Whitney, R. M. (1957). J. Dairy Sci. 40, 1495.CrossRefGoogle Scholar
Pyne, G. T. & McGann, T. C. A. (1960). J. Dairy Res. 27, 9.CrossRefGoogle Scholar
Reinart, A. & Nesbitt, J. M. (1957). J. Dairy Sci. 40, 1645.Google Scholar
Saffran, M. & Denstedt, O. F. (1948). J. biol. Chem. 175, 849.CrossRefGoogle Scholar
White, J. C. D. & Davies, D. T. (1958). J. Dairy Res. 25, 236.Google Scholar