Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T08:31:46.363Z Has data issue: false hasContentIssue false

An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders

Published online by Cambridge University Press:  29 March 2006

T. H. Kuehn
Affiliation:
Department of Mechanical Engineering, University of Minnesota. Minneapolis
R. J. Goldstein
Affiliation:
Department of Mechanical Engineering, University of Minnesota. Minneapolis

Abstract

An experimental and theoretical-numerical investigation has been carried out to extend existing knowledge of velocity and temperature distributions and local heat-transfer coefficients for naturel convection within a horizontal annulus. A Mach—Zehnder interferometer was used to determine temperature distributions and local heat-transfer coefficients experimentally. Results were obtained using water and air at atmospheric pressure with a ratio of gap width to inner-cylinder diameter of 0·8. The Rayleigh number based on the gap width varied from 2·11 × 104to 9·76 × 105. A finite-difference method was used to solve the governing constant-property equations numerically. The Rayleigh number was changed from 102 to 105 with the influence of Prandtl number and diameter ratio obtained near a Rayleigh number of 104. Comparisons between the present experimental and numerical results under similar conditions show good agreement.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. R. 1964 A numerical method for solving the equations of natural convection in a narrow concentric cylindrical annulus with a horizontal axis Quart. J. Mech. Appl. Math. 17, 471481.Google Scholar
Barelko, V. V. & Shtessel, E. A. 1973 On a heat-transfer law for free convection in cylindrical and spherical layers Int. Chem. Engrs, 13, 479483.Google Scholar
Batchelor, G. K. 1954 Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures Quart. Appl. Math. 12, 209233.Google Scholar
Beckmann, W. 1931 Die Wärmeübertragung in zylindrischen Gasschichten bei natürlicher Konvektion. Forsch. Geb. d. Ingenieurwesen, 2 (5), 165810.Google Scholar
Berkengeim, A. A. 1966 An investigation of natural convection in cylindrical liquid layers Inzh.-Fiz. Zh. 10, 459464.Google Scholar
Bishop, E. H. 1966 Discussion 3rd Int. Heat Transfer Conf. Chicago, 2 (session 6), 155810.
Bishop, E. H. & Carley, C. T. 1966 Photographic studies of natural convection between concentric cylinders. Proc. 1966 Heat Transfer Fluid Mech. Inst. pp. 6378.Google Scholar
Bishop, E. H., Carley, C. T. & Powe, R. E. 1968 Natural convective oscillatory flow in cylindrical annuli Int. J. Heat Mass Transfer, 11, 17411752.Google Scholar
Crawford, L. & Lemlich, R. 1962 Natural convection in horizontal concentric cylindrical annuli I. E. C. Fund. 1, 260264.Google Scholar
Eckert, E. R. G. 1960 The Collected Works of Irving Langmuir, introduction to part 1, vol. 2. Pergamon.
Eckert, E. R. G. & Soehngen, E. E. 1948 Studies on heat transfer in laminar free convection with the Zehnder—Mach interferometer. Wright-Patterson AFB Tech. Rep. no. 5747, ATI-44580.Google Scholar
Goldstein, R. J. 1970 Optical measurement of temperature. Measurement Techniques in Heat Transfer, AGARDograph, no. 130, pp. 177228.Google Scholar
Gosman, A. D., Pun, W. N., Runchal, A. K., Spalding, D. B. & Wolfshtein, M. 1969 Heat and Mass Transfer in Recirculating Flows. Academic.
Grigull, U. & Hauf, W. 1966 Natural convection in horizontal cylindrical annuli. 3rd Int. Heat Transfer Conf., Chicago, pp. 182195.Google Scholar
Hauf, W. & Grigull, U. 1970 Optical methods in heat transfer Adv. in Heat Transfer, 6, 133366.Google Scholar
Hodnett, P. F. 1973 Natural convection between horizontal heated concentric circular cylinders J. Appl. Math. Phys. 24, 507516.Google Scholar
Huetz, J. & Petit, J. P. 1974 Natural and mixed convection in concentric annular spaces — experimental and theoretical results for liquid metals. 5th Int. Heat Transfer Conf., Tokyo, vol. 3, pp. 169172.Google Scholar
Itoh, M., Fujita, T., Nishiwaki, N. & Hirata, M. 1970 A new method of correlating heat-transfer coefficients for natural convection in horizontal cylindrical annuli Int. J. Heat Mass Transfer, 13, 13641368.Google Scholar
Koshmarov, Y. A. & Ivanov, A. Y. 1973 Experimental study of heat transfer through a rarefied gas between coaxial cylinders Heat Transfer, Sov. Res. 5, 2936.Google Scholar
Kraussold, H. 1934 Wärmeabgabe von zylindrischen Flüssigkeitsschichten bei natürlicher Konvektion. Forsch. Geb. d. Ingenieurwesen, 5 (4), 186810.Google Scholar
Lis, J. 1966 Experimental investigation of natural convection heat transfer in simple and and obstructed horizontal annuli. 3rd Int. Heat Transfer Conf., Chicago, pp. 196204.Google Scholar
Liu, C. Y., Mueller, W. K. & Landis, F. 1961 Natural convection heat transfer in long horizontal cylindrical annuli. Int. Developments in Heat Transfer, A.S.M.E. pp. 976984.Google Scholar
Macgregor, R. K. & Emery, A. F. 1968 Free convection through vertical plane layers — moderate and high Prandtl number fluids. A.S.M.E. Paper, no. 68-HT-4.Google Scholar
Mack, L. R. & Bishop, E. H. 1968 Natural convection between horizontal concentric cylinders for low Rayleigh numbers Quart. J. Mech. Appl. Math. 21, 223241.Google Scholar
Pedersen, B. O., Doepken, H. C. & Bolin, P. C. 1971 Development of a compressedgas-insulated transmission line. I.E.E.E. Winter Power Meeting, paper 71 TP 193-PWR.Google Scholar
Powe, R. E. 1974 Bounding effects of the heat loss by free convection from spheres and cylinders J. Heat Transfer, A.S.M.E. 96, 558560.Google Scholar
Powe, R. E., Carley, C. T. & Bishop, E. H. 1969 Free convective flow patterns in cylindrical annuli J. Heat Transfer, 91, 310314.Google Scholar
Powe, R. E., Carley, C. T. & Carruth, S. L. 1971 A numerical solution for natura convection in cylindrical annuli. J. Heat Transfer, 92 (12), 210810.Google Scholar
Raithby, G. D. & Hollands, K. G. T. 1975 A general method of obtaining approximate solutions to laminar and turbulent free convection problems Adv. in Heat Transfer, 11, 265315.Google Scholar
Rotem, Z. 1972 Conjugate free convection from horizontal conducting circular cylinders Int. J. Heat Mass Transfer, 15, 16791693.Google Scholar
Rubel, A. & Landis, F. 1969 Numerical study of natural convection in a vertical rectangular enclosure. Phys. Fluids Suppl. 12, II 208810.Google Scholar
Scanlan, J. A., Bishop, E. H. & Powe, R. E. 1970 Natural convection heat transfer between concentric spheres Int. J. Heat Mass Transfer, 13, 18571872.Google Scholar
Shibayama, S. & Mashimo, Y. 1968 Natural convection heat transfer in horizontal concentric cylindrical annuli. Papers J.S.M.E. Nat. Symp. no. 196, pp. 720.Google Scholar
Voigt, H. & Krischer, O. 1932 Die Wärmeübertragung in zylindrischen Luftschichten bei natürlicher Konvektion. Forsch. Geb. d. Ingenieurwesen, 3 (6), 303810.Google Scholar
Zagromov, Y. A. & Lyalikov, A. S. 1966 Free convection heat transfer in horizontal cylindrical layers with different positions of the heated element. Inzh.-Fiz. Zh. 10 (5), 577810.Google Scholar