Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-30T01:58:43.238Z Has data issue: false hasContentIssue false

Structure of the turbulent boundary in drag-reducing pipe flow

Published online by Cambridge University Press:  12 April 2006

B. U. Achia
Affiliation:
Department of Chemical Engineering, University of British Columbia, Vancouver V6T 1W5, Canada Present address: Imperial Oil Enterprises Ltd, Research Department, Box 3022, Sarnia, Ontario N7T 7M1, Canada.
D. W. Thompson
Affiliation:
Department of Chemical Engineering, University of British Columbia, Vancouver V6T 1W5, Canada

Abstract

The effect of a drag-reducing additive on the structure of wall turbulence in pipe flow was investigated experimentally. Real-time hologram interferometry was used for flow visualization and turbulence measurements. The real-time modulation of interference fringes by a refractive-index enhancer infused into the near-wall flow was recorded by medium-speed motion photography. The spanwise direction and the direction normal to the wall were studied to investigate the ‘streaks’ and ‘bursts’ that originate in the sublayer. A region of the flow was sampled for spatial and temporal correlations of concentration fluctuations to detect the scales of eddy interaction.

The addition of 50 p.p.m. by weight of Separan AP30 to water significantly altered the Newtonian wall-flow structure. The drag-reducing additive suppressed the formation of streaks and the eruption of bursts. When compared at the same wall shear, the sublayer period increased over the Newtonian value by a factor almost equal to the ratio of the corresponding non-dimensional streak spacings.

These results suggest a stabilized wall layer in the drag-reducing solution as compared with that of the Newtonian solvent, resulting in less turbulence production and reduced frictional drag. The role of the extensional viscosity of the dilute polymer solution is discussed as a possible mechanism for explaining the visualized and measured phenomena.

Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achia, B. U. 1972 J. Phys. E, Sci. Instr. 5, 128.
Achia, B. U. 1975 Structure of pipe wall turbulence in Newtonian and drag-reducing flow: a hologram-interferometric study. Ph.D. thesis in Chemical Engineering, University of British Columbia (also M.A.Sc. thesis, 1971).
Achia, B. U. & Thompson, D. W. 1972 Appl. Optics 11, 953.
Achia, B. U. & Thompson, D. W. 1974 Int. Conf. Drag Reduction, Cambridge, England, paper A2. Bedford: BHRA Fluid Engineering.
Arunachalam, V. R., Hummel, R. L. & Smith, J. W. 1972 Can. J. Ch. E. 50, 337.
Astarita, G. 1965 I & E.C. Fund. 4, 354.
Carpenter, C. N. 1973 Drag reduction visual study. Ph.D. thesis, Ohio State University, Columbus.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Darby, R. 1970 Trans. Soc. Rheol. 14, 185.
Denn, M. M. & Marrucci, G. 1971 A.I.Ch.E. J. 17, 101.
Donohue, G. L. 1973 Hydrogen bubble flow visualization: limitations in drag-reducing polymer solutions. Naval Undersea Center, San Diego, California, Release no. 100.Google Scholar
Donohue, G. L., Tiederman, W. G. & Reischman, M. M. 1972 J. Fluid Mech. 56, 559.
Eckelman, L. D., Fortuna, G. & Hanratty, T. J. 1972 Nature Phys. Sci. 236, 94.
Fortuna, G. & Hanratty, T. J. 1972 J. Fluid Mech. 53, 575.
Gadd, G. E. 1965 Nature 206, 463.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 493.
Hershey, H. C. & Zakin, J. L. 1967 I. & E.C. Fund. 6, 381.
Hoyt, J. W. 1972 Trans. A.S.M.E., J. Basic Engng. 94, 258.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Lumley, J. L. 1973 J. Polymer Sci.: Macromol. Rev. 7, 263.
Meek, R. L. 1968 A study of the viscous sublayer in turbulent flow. Ph.D. thesis, University of Utah, Salt Lake City.
Metzner, A. B. 1968 Trans. A.S.M.E., J. Lub. Tech. 90, 531.
Metzner, A. B. & Metzner, A. P. 1970 Rheologica Acta 9, 174.
Nychas, S. G., Hershey, H. C. & Brodkey, R. S. 1973 J. Fluid Mech. 61, 513.
Offen, G. R. & Kline, S. J. 1974 J. Fluid Mech. 62, 223.
Offen, G. R. & Kline, S. J. 1975 J. Fluid Mech. 70, 209.
Oliver, D. R. & Bragg, R. 1973 Chem. Engng J. 5, 1.
Rollin, A. 1971 Similarity laws and turbulence structure of drag-reducing fluids. Ph.D. thesis, University of Alberta, Edmonton, Canada.
Rouse, P. E. & Sittel, K. 1953 J. Appl. Phys. 24, 690.
Rudd, M. J. 1972 J. Fluid Mech. 51, 673.
Schraub, F. A. & Kline, S. J. 1965 A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients, Dept. Mech. Engng, Stanford Univ., California, Rep.MD–12.
Seyer, F. A. & Metzner, A. B. 1969 A.I.Ch.E. J. 15, 426.
Thomas, L. C. & Greene, H. L. 1973 Proc. Symp. Turbulence in Liquids, Univ. Missouri, Rolla (ed. G. K. Patterson & J. L. Zakin), p. 394.
Thomas, L. C., Greene, H. L., Nokes, R. F. & Chu, M. 1973 A.I.Ch.E. Symp. Ser. 130, 14.
Wells, C. S. & Spangler, J. G. 1967 Phys. Fluids 10, 1890.
Zimm, B. H. 1956 J. Chem. Phys. 24, 264.