Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T07:10:22.481Z Has data issue: false hasContentIssue false

The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104

Published online by Cambridge University Press:  19 April 2006

Roger Bouard
Affiliation:
Laboratoire de Mécanique des Fluides, Université de Poitiers, France
Madeleine Coutanceau
Affiliation:
Laboratoire de Mécanique des Fluides, Université de Poitiers, France

Abstract

The time development of the symmetrical standing zone of recirculation, which is formed in the early stage of the flow due to a circular cylinder impulsively set in motion perpendicular to its generators, has been studied using a flow visualization technique. The Reynolds numbers (based upon the diameter) range from 40 to 104. Some new phenomena indicated in the flow patterns are revealed, and several different regimes are differentiated by a detailed analysis of the evolution of the main flow characteristics. A correlation with some theoretical results is established.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Lev, M. & Yang, H. T. 1975 Initial flow field over an impulsively started circular cylinder. J. Fluid Mech. 72, 625.Google Scholar
Blasius, H. 1908 Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1. (English translation, NACA TM 1256.)Google Scholar
Collins, W. M. & Dennis, S. C. R. 1973b Flow past an impulsively started circular cylinder. J. Fluid Mech. 60, 105.Google Scholar
Collins, W. M. & Dennis, S. C. R. 1973b The initial flow past an impulsively started circular cylinder. Quart. J. Mech. Appl. Math. 26, 53.Google Scholar
Coutanceau, M. & Bouard, R. 1977a Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 79, 231.Google Scholar
Coutanceau, M. & Bouard, R. 1977b Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow. J. Fluid Mech. 79, 257.Google Scholar
Coutanceau, M. & Bouard, R. 1979 Sur la formation de tourbillons ‘secondaires’ dans le sillage d'un cylindre soumis à un départ impulsif. C. r. hebd. Séanc. Acad. Sci. 288, Série B-45.Google Scholar
Daube, O. & Ta Phuoc Loc 1979 Méthode numérique compacte pour la simulation d’écoulements visqueux décollés stationnaires ou non. Application aux corps profilés — 16ème Colloque d'Aérodynamique Appliquée de Lille.
Deffenbaugh, F. D. & Marshall, F. J. 1976 Time development of the flow about an impulsively started cylinder. A.I.A.A. Journal 14, 908.Google Scholar
Gerrard, J. H. 1978 The wakes of cylindrical bluff bodies at low Reynolds number. Phil. Trans. R. Soc. 288, 351.Google Scholar
Goldstein, S. & Rosenhead, O. C. 1936 Boundary layer growth. Proc. Phil. Soc. 32, 392.Google Scholar
Honji, H. & Taneda, S. 1969 Unsteady flow past a circular cylinder. J. Phys. Soc. Japan 27, 1668.Google Scholar
Jain, P. C. & Rao, K. S. 1969 Numerical solution of unsteady viscous incompressible fluid flow past a circular cylinder. Phys. Fluids Suppl. 12 (II), 57.Google Scholar
Kawaguti, M. & Jain, P. C. 1966 Numerical study of a viscous fluid flow past a circular cylinder. J. Phys. Soc. Japan, 21, 2055.Google Scholar
Panikker, P. K. G. & Lavan, Z. 1975 Flow past impulsively started bodies using Green's functions. J. Comp. Phys. 18, 46.Google Scholar
Patel, V. A. 1976 Time dependent solutions of the viscous incompressible flow past a circular cylinder by the method of series truncation. Computers and Fluids, 4, 13.Google Scholar
Prandtl, L. & Tietjens, O. G. 1934 Applied Hydro and Aeromechanics, McGraw-Hill (translated from the German edition, Springer 1931).
Schwabe, M. 1935 Über Druckermittlung in der nichtstationären ebenen Strömung. Ingénieur—Archiv. 6, 34.Google Scholar
Son, J. S. & Hanratty, T. J. 1969 Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500. J. Fluid Mech. 35, 369.Google Scholar
Taneda, S. 1972 Visualization experiments on unsteady viscous flows around cylinders and plates. In Récentes recherches sur les couches limites instationnaires, vol. 2 (ed. E. A. Eichelbrenner), p. 1165. Laval University Press, Quebec.
Taneda, S. 1977 Visual study of unsteady separated flows around bodies. Prog. Aerospace Sci. 17, 287.Google Scholar
Ta Phuoc Loc 1980 Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder. J. Fluid Mech. 100, 111.Google Scholar
Thoman, D. C. 1966 Numerical solutions of the dependent two-dimensional flow of a viscous, incompressible fluid over stationary and rotating cylinders. Ph.D. dissertation, University of Notre-Dame, Indianna.
Thoman, D. C. & Szewczyk, A. A. 1969 Time-dependent viscous flow over a circular cylinder. Phys. Fluids Suppl. 12 (II), 76.Google Scholar
Wang, C. Y. 1967 The flow past a circular cylinder which is started impulsively from rest. J. Math. Phys. 46, 195.Google Scholar