Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T09:42:09.408Z Has data issue: false hasContentIssue false

On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow

Published online by Cambridge University Press:  20 April 2006

Günter Schewe
Affiliation:
Max-Planck-Institut für Strömungsforschung, D-3400 Göttingen, Federal Republic of Germany Present address: Inst. f. Aeroelastik der DFVLR-AVA Göttingen, D-3400 Göttingen.

Abstract

In a wind tunnel designed for flow-acoustic measurements, the wall-pressure fluctuations beneath a turbulent boundary layer have been investigated. The measurements were carried out with variously sized pressure transducers (19 [les ] d+ [les ] 333) and with an array of four small transducers (separation distance Δx+ = 75). It is shown that the dimensionless diameter d+ = 19 of the transducers is sufficient to resolve the essential structures of the turbulent pressure fluctuations. The power spectrum Φ+) measured with the smallest transducer d+ = 19 partly exhibits power-law decay $\Phi \sim \omega^{\frac{7}{3}}$, which has been theoretically predicted for locally isotropic turbulence. By visual analysis and signal averaging in the time domain, pressure structures with high amplitudes could be detected which have the shape of short wavetrains or pulses. Their characteristic frequency and longitudinal wavelength have the mean values ω+ = 0.52 and λ+ = 145 respectively, and their mean convection velocity amounts to uc/u = 0.53. It was calculated from the measured probability density that these characteristic structures play an important role, although the probability of their occurrence is low. The sources of these wall-pressure structures can be located in the buffer layer of the boundary layer.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, W. K. 1970 J. Fluid Mech. 44, 637660.
Bull, M. K. 1967 J. Fluid Mech. 28, 719754.
Bull, M. K. & Thomas, A. S. W. 1976 Phys. Fluids, 19, 597599.
Cantwell, B. J. 1981 Ann. Rev. Fluid Mech. 13, 457.
Corcos, G. M. 1963 J. Acoust. Soc. Am. 35, 192.
Corcos, G. M. 1967 J. Sound Vib. 6, 5970.
Dinkelacker, A., Hessel, M., Meier, G. E. A. & Schewe, G. 1977 Phys. Fluids 20, 216224.
Eckelmann, H., Nychas, S. G., Brodkey, R. S. & Wallace, J. M. 1977 Phys. Fluids 20, 225231.
Emmerling, R. 1973 Mitt. MPI f. Strömungsforschung & AVA Göttingen no. 56.
Emmerling, R., Meier, G. E. A. & Dinkelacker, A. 1974 AGARD Conf. Proc. no. 131, 24-124-12.
Hessel, M. 1978 Rep. MPI f. Strömungsforschung, Göttingen no. 11/1978.
Hodgson, T. H. 1962 PhD thesis, London University.
Hofbauer, M. 1978 Mitt. MPI f. Strömungsforschung & A V A Göttingen no. 66.
Hofbauer, M. 1979 AGARD Rep. no. 271.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133160.
Kreplin, H. P. & Eckelmann, H. 1979 J. Fluid Mech. 95, 305322.
Kuhl, W., Schodder, G. R. & SCHRÖDER, F.-K. 1954 Acustica 4, 519532.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. II. MIT Press.
Langeheineken, T. & Dinkelacker, A. 1978 Fortschritte der Akustik, p. 391. VDE-Verlag.
Schewe, G. 1979 Mitt. MPI f. Strömungsforschung Göttingen no. 68A.
Schewe, G. 1980 Rep. MPI f. Strömungsforschung, Göttingen no. 1/1980.
Willmarth, W. W. 1975 Ann. Rev. Fluid Mech. 7, 1338.
Willmarth, W. W. & Roos, F. W. 1965 J. Fluid Mech. 22, 8194.