Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T10:05:55.990Z Has data issue: false hasContentIssue false

The Mechanism of Self-Disinfection of the Human Skin and its Appendages

Published online by Cambridge University Press:  15 May 2009

J. M. L. Burtenshaw
Affiliation:
From the Inoculation Department, St Mary's Hospital, London, and The Bacteriological Laboratory, County Public Health Department, Stafford
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Four β-haemolytic strains of Streptococcus, suspended in normal saline, showed progressive increase in mortality, as the pHwas lowered from 7·5 to 5·0; below pH 5·0 the mortality was greatly accentuated.

2. Ether and alcohol extracts of human skin and its appendages were powerfully, saline extracts more weakly and inconstantly, lethal to the haemolytic Streptococcus and to certain other organisms.

3. The long chain fatty acids and soaps are the chief, if not the only, bactericidal constituents of skin and its appendages.

4. Experiments are described illustra ting the streptococcocidal effect of various acids occurring in animal fats.

5. Cystein and blood inhibit the streptoeoccocidal activity of skin fats and certain fatty acids. Ultra-violet light may increase this activity, or abolish, the inhibition exercised by cystein.

6. The mechanism of the sterilizing power of fatty acids and soaps, the influence exerted by cystein, blood, and ultra-violet light on the sterilizing power, of skin fats and fatty acids, and the relationship of skin fatty acids to lysozyme are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

References

REFERENCES

Abraham, E. P. & Robinson, R. (1937). Nature, Lond., 140, 24.CrossRefGoogle Scholar
Ameseder, F. (1907). Hoppe-Seyl. Z. 52, 121.CrossRefGoogle Scholar
Avery, O. T. & Cullen, G. E. (1919). J. exp. Med. 29, 215.CrossRefGoogle Scholar
Bayliss, M. (1936). J. Bact. 31, 489.CrossRefGoogle Scholar
Blein, M. & Ripert, J. (1937). C.R. Soc. Biol. Paris, 124, 612.Google Scholar
Berczeller, L. (1917). Biochem. Z. 84, 59.Google Scholar
Bolton, E. R. (1928). Oils, Fats, and Fatty Foods, p. 312. London: J. and A. Churchill.Google Scholar
Brann, G. (1928). Klin. Wschr. 7, ii, 2059.CrossRefGoogle Scholar
Burtenshaw, J. M. L. (1938). J. Hygiene, Comb., 38, 575.Google Scholar
Cerutti, P. (1934). G. ital. Derm. 75, i, 112.Google Scholar
Conradi, H. (1902). Beit. chem. Physiol. Path. 1, 193.Google Scholar
Coulter, C. B. (1924). J. gen. Physiol. 7, 1.CrossRefGoogle Scholar
Cowles, P. B. (1938). Yale J. Biol. Med. 11, 127.Google Scholar
Davies, W. L. (1939). The Chemistry of Milk, p. 11. London: Chapman and Hall.Google Scholar
Dernby, K. G. (1921). Ann. de l'Inst. Pasteur, 35, 277.Google Scholar
Eckstein, H. C. (1926). Proc. Soc. exp. Biol N. Y., 23, 581.CrossRefGoogle Scholar
Eckstein, H. C. & Wile, U. J. (1926). J. biol. Chem. 69, 181.CrossRefGoogle Scholar
Eggerth, A. H. (1926). J. gen. Physiol. 10, 147.CrossRefGoogle Scholar
Eggerth, A. H. (1927). J. exp. Med. 46, 671.CrossRefGoogle Scholar
Eggerth, A. H. (1929 a). J. exp. Med. 49, 53.CrossRefGoogle Scholar
Eggerth, A. H. (1929 b). J. exp. Med. 50, 299.CrossRefGoogle Scholar
Epstein, L. A. & Chain, E. (1940). Brit. J. exp. Path. 21, 324.Google Scholar
Fleming, A. (1922). Proc. roy. Soc. B, 93, 306.Google Scholar
Fleming, A. (1929). Lancet, 1, 217.Google Scholar
Fleming, A. (1932). Proc. roy. Soc. Med. 26, 1.Google Scholar
Fleming, A. & Allison, V. D. (1922). Proc. roy. Soc. B, 94, 142.Google Scholar
Harris, R. S. & Bunker, J. W. M. (1931). Proc. Amer. Acad. Arts Sci. 67, 147.CrossRefGoogle Scholar
Harris, R. S., Bunker, J. W. M. & Milas, N. A. (1932). J. Bact. 23, 429.CrossRefGoogle Scholar
Hawk, P. B. (1938). Practical Physiological Chemistry, p. 449. London: J. and A. Churchill.Google Scholar
Hettche, H. O. (1934). Z. ImmunForsch. 83, 506.Google Scholar
Hill, J. H. & White, E. C. (1933). Arch. Surg. 26, 901.CrossRefGoogle Scholar
Holm, G. E., Greenbank, G. R. & Dreysher, J. (1927). J. Industr. Engng Chem. 19, 156.CrossRefGoogle Scholar
Koga, K. (1934). Fukuoka Acta med. 27, 124.Google Scholar
Kokko, U. P. (1939). Arch. Hyg. 122, 44.Google Scholar
Kooyman, D. J. (1932). Arch. Derm. Syph., N.Y., 25, 245.CrossRefGoogle Scholar
Lamar, R. V. (1911). J. exp. Med. 13, 380.CrossRefGoogle Scholar
Leake, C. D. (1923). Amer. J. Physiol. 63, 540.CrossRefGoogle Scholar
Linser, P. (1904). Dtsch. Arch. klin. Med. 80, 201.Google Scholar
Marchionini, A. (1928). Arch. Derm. Syph., Wien, 158, 290.CrossRefGoogle Scholar
McSwiney, B. A. (1934). Proc. roy. Soc. Med. 27, 839.CrossRefGoogle Scholar
Nichols, H. J. (1920). J. Lab. din. Med. 5, 502.Google Scholar
Noguchi, H. (1907). Biochem. Z. 6, 327.Google Scholar
du Nouy, P. L. (1922). J. exp. Med. 36, 115.CrossRefGoogle Scholar
Osterhout, W. J. V. (1925). J. gen. Physiol. 8, 131.CrossRefGoogle Scholar
Partridge, R. A. (1938). J. Amer. Leath. Chem. Ass. 33, 144.Google Scholar
Peck, S. M., Rosenfeld, H., Leifer, W. & Bierman, W. (1939). Arch. Derm. Syph., Wien, 39, 126.CrossRefGoogle Scholar
Quain, J. (1912). Textbook of Anatomy, 3, ii, 274. London.Google Scholar
Reichenbach, H. (1908). Z. Hyg. InfektKr. 59, 296.Google Scholar
Reid, J. D. (1932). Amer. J. Hyg. 16, 540.Google Scholar
Rideal, E. K. (1923). Fifth Rep. on Colloid Chem., Brit. Ass. for Advancement of Sci. p. 131.Google Scholar
Rideal, E. K. (1930). System of Bacteriology, Med. Res. Council, London, 1, 132.Google Scholar
Roberts, E. A. H. (1937). Quart. J. exp. Physiol. 27, 89.CrossRefGoogle Scholar
Röhmann, F. (1905). Zbl. Physiol. 19, 317.Google Scholar
Rothman, St (1929). Jadassohn's Handbch. d. Haut u. Geschlechtskrkhtn., Berlin, 1, ii, 232.Google Scholar
Schiefferdecker, P. (1922). Die Hautdrusen der Menschen und der Saugetiere. Stuttgart.Google Scholar
Schwenkerbecher, A. (1929). Handbch. der normalen u. pathologischen Physiologie, Berlin (Bethe, Bergman, Embden, Ellinger), 4, 709.Google Scholar
Sears, H. J. & Black, N. (1934). J. Bact. 27, 453.CrossRefGoogle Scholar
Stevens, F. A. (1935). J. Lab. Glin. Med. 21, 26.Google Scholar
Stevens, F. A. (1936 a). J. Bact, 32, 47.CrossRefGoogle Scholar
Stevens, F. A. (1936 b). J. infect. Dis. 58, 185.CrossRefGoogle Scholar
Stevens, F. A. (1936 c). J. Lab. din. Med. 21, 1040.Google Scholar
Stevens, F. A. (1937). J. exp. Med. 65, 121.CrossRefGoogle Scholar
Stock, C. C. & Francis, T. (1940). J. Exp. Med. 71, 661.CrossRefGoogle Scholar
Testut, J. L. (1922). Textbook of Anatomy, 3, 328, 628. London.Google Scholar
Topley, W. W. C. & Wilson, G. S. (1936). The Principles of Bacteriology and Immunity, p. 448. London: Edward Arnold & Co.Google Scholar
Traube, J.(1919). Biochem. Z. 98, 177.Google Scholar
Unna, P. G. (1894). Dtsch. Med. Ztg, 1 and 2.Google Scholar
Unna, P. G. (1898 a). Dtsch. Med. Ztg, 43.Google Scholar
Unna, P. G. (1898 b). Mh. prakt. Derm. 26, 601.Google Scholar
Unna, P. G. (1928). Histochemie der Haut. Leipzig.Google Scholar
Unna, P. G. & Golodetz, L. (1909). Biochem. Z. 20, 469.Google Scholar
Walker, J. E. (1924). J. infect. Dis. 35, 557.CrossRefGoogle Scholar
Walker, J. E. (1925). J. infect. Dis. 37, 181.CrossRefGoogle Scholar
Walker, J. E. (1926). J. infect. Dis. 38, 127.CrossRefGoogle Scholar
Whitehouse, A. G. R. (1935). Proc. roy. Soc. B, 117, 139.Google Scholar
Wirgin, G. (1904). Z. Hyg. InfectKr. 64, 149.Google Scholar
Wren, H. T. (1927). Vet. Bureau Med. Butt. 3, 895.Google Scholar
Wright, I. S. & MacLenathen, E. (1939). J. Lab. clin. Med. 24, 806.Google Scholar
Wolff, L. K. (1927 a). Z. ImmunForsch. 50, 88.Google Scholar
Wolff, L. K. (1927 b). Z. ImmunForsch. 54, 188.Google Scholar
Ziemssen, H. von (1883). Handbch. der speciellen Path. u. Therap., Leipzig, 14, i, 122.Google Scholar