Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T19:48:02.079Z Has data issue: false hasContentIssue false

Possible Wavelength Discrimination by Multibank Retinae in Deep-Sea Fishes

Published online by Cambridge University Press:  11 May 2009

E.J. Denton
Affiliation:
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB
N.A. Locket
Affiliation:
Department of Anatomy and Histology, University of Adelaide, South Australia

Extract

Experiments on intact retinae from the eyes of the deep-sea fish Diretmus argenteus show that the region of the retina that receives light from above and possesses very long rods has different photosensitive pigments from the region that receives light from below. In both of these regions the retina has several banks of rods. The optical densities of the photosensitive pigments in the retina at the peaks of absorption are almost the same (about one) in these two regions. However, the region of the retina with very long rods also contains a stable yellow pigment that absorbs heavily in the blue and near ultra-violet (optical density about three at the wavelength 390 nm). If, as seems certain, this stable pigment is largely in the long rods it will filter the light reaching the other layers of rods and act, for this region, as yellow lenses do for whole retinae in other fish. The lens of Diretmus was shown to be transparent in the visible and near ultra-violet.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badcock, J., 1970. The vertical distribution of mesopelagic fishes collected on the SOND cruise. Journal of the Marine Biological Association of the United Kingdom, 50, 10011044.CrossRefGoogle Scholar
Badcock, J. & Merrett, N.R., 1976. Midwater fishes in the eastern North Atlantic – 1. Vertical distribution and associated biology in 30°N 23°W, with developmental notes on certain myctophids. Progress in Oceanography, 7, 358.CrossRefGoogle Scholar
Brauer, A., 1908. Die Tiefseefische, 2. Anatomische Teil. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition aufdem Dampfer ‘Valdivia’, 15, 266 pp.Google Scholar
Clarke, G.L. & Denton, E.J., 1962. Light and animal life. In The Sea, vol. 1 (ed. M.N., Hill), pp. 456467. New York: Interscience Publishers.Google Scholar
Clarke, G.L. & Hubbard, C.J., 1959. Quantitative records of the luminescent flashing of oceanic animals at great depths. Limnology and Oceanography, 4, 163180.CrossRefGoogle Scholar
Crescitelli, F. & Dartnall, H.J.A., 1954. A photosensitive pigment of the carp retina. Journal of Physiology, 125, 607627.CrossRefGoogle ScholarPubMed
Dartnall, H.J.A., 1975. Assessing the fitness of visual pigments for their photic environments. In Vision in fishes (ed. M., Ali), pp. 323333. New York: Plenum Press.Google Scholar
Denton, E.J., 1955. Absorption du cristallin de Rana esculenta et dapos;Anguilla vulgaris. Bulletin du Museum National d'Histoire Naturelle, 27, 418425.Google Scholar
Denton, E.J., 1956. Recherches sur l'absorption de la lumière par le cristallin des poissons. Bulletin de l'Institut Océanographique, no. 1071, 10 pp.Google Scholar
Denton, E.J., 1959. The contributions of the orientated photosensitive and other molecules to the absorption of the whole retina. Proceedings of the Royal Society (B), 150, 7894.Google Scholar
Denton, E.J., Gilpin-Brown, J.B. & Wright, P.G., 1970. On the ‘filters’ in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. Journal of Physiology, 208, 7273P.Google ScholarPubMed
Denton, E.J., Herring, P.J., Widder, E.A., Latz, M.F. & Case, J.F., 1985. The role of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proceedings of the Royal Society (B), 225, 6397.Google Scholar
Denton, E.J. & Locket, N.A., 1977. Report of the Council. Journal of the Marine Biological Association of the United Kingdom, 57, 1181.Google Scholar
Denton, E.J. & Nicol, J.A.C., 1964. The chorioidal tapeta of some cartilaginous fishes (Chondrichthyes). Journal of the Marine Biological Association of the United Kingdom, 44, 219258.CrossRefGoogle Scholar
Denton, E.J. & Pirenne, M.H., 1954. The absolute sensitivity and functional stability of the human eye. Journal of Physiology, 123, 417442.CrossRefGoogle ScholarPubMed
Denton, E.J. & Shaw, T.I., 1963. The visual pigments of some deep-sea elasmobranchs. Journal of the Marine Biological Association of the United Kingdom, 43, 6570.CrossRefGoogle Scholar
Denton, E.J. & Walker, M.A., 1958. The visual pigment of the conger eel. Proceedings of the Royal Society (B), 148, 257269.Google ScholarPubMed
Denton, E.J. & Warren, F.J., 1957. The photosensitive pigments in the retinae of deep-sea fish. Journal of the Marine Biological Association of the United Kingdom, 36, 651662.CrossRefGoogle Scholar
Denton, E.J. & Wyllie, J.H., 1955. Study of the photosensitive pigments in the pink and green rods of the frog. Journal of Physiology, 127, 8189.CrossRefGoogle ScholarPubMed
Herring, P.J., 1983. The spectral characteristics of luminous marine organisms. Proceedings of the Royal Society (B), 220, 183217.Google Scholar
Jerlov, N.G., 1968. Optical Oceanography. Copenhagen: Elsevier.Google Scholar
Kampa, E., 1970. Underwater daylight and moonlight measurements in the eastern North Atlantic. Journal of the Marine Biological Association of the United Kingdom, 50, 397420.CrossRefGoogle Scholar
Locket, N.A., 1977. Adaptations to the deep-sea environment. In Handbook of Sensory Physiology, vol. vii/5. The Visual System in Vertebrates (ed. F., Crescitelli), pp. 67192. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Locket, N.A., 1980. Variation of architecture with size in the multiple-bank retina of a deep-sea teleost, Chauliodus sloani. Proceedings of the Royal Society (B), 208, 223242.Google Scholar
Locket, N.A., 1985. The multiple bank fovea of Bajacalifornia drakei, an alepocephalid deep-sea teleost. Proceedings of the Royal Society (B), 224, 722.Google Scholar
Lythgoe, J.N., 1972. List of vertebrate visual pigments. In Handbook of Sensory Physiology, vol.vii/1. The Photochemistry of Vision (ed. H.J., Dartnall), pp. 604624. Berlin: Springer-Verlag.Google Scholar
Matsui, S., Seidou, M., Horiuchi, S., Uchiyama, I. & Kito, Y., 1988. Adaptation of a deep-sea cephalopod to the photic environment. Journal of General Physiology, 92, 5566.CrossRefGoogle Scholar
Matsui, S., Seidou, M., Uchiyama, I., Sekiya, N., Hiraki, K., Yoshihara, K. & Kito, Y., 1988. 4-hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scillitans. Biochimica et Biophysica Acta, 966, 370374.CrossRefGoogle Scholar
Morton, R.A. & Pitt, G.A.J., 1957. Visual pigments. Fortschritte der Chemie Organischer Naturstoffe, 14, 224316.Google ScholarPubMed
Munk, O., 1966 a. Ocular anatomy of some deep-sea teleosts. Dana Reports, no. 70, 62 pp.Google Scholar
Munk, O., 1966 b. On the retina of Diretmusargenteus Johnson, 1863 (Diretmidae, Pisces). Videnskabelige Meddelelser fra Dansk Naturhistorik Forening i Kjøbenhavn, 129, 7380.Google Scholar
Muntz, W.R.A., 1976. On yellow lenses in mesopelagic animals. Journal of the Marine Biological Association of the United Kingdom, 56, 963976.CrossRefGoogle Scholar
Munz, F.W., 1958. Photosensitive pigments from retinae of certain deep-sea fishes. Journal of Physiology, 140, 220235.CrossRefGoogle ScholarPubMed
Nicol, J.A.C., 1958. Observations on luminescence in pelagic animals. Journal of the Marine Biological Association of the United Kingdom, 37, 705752.CrossRefGoogle Scholar
O&day, W.T. & Fernandez, H.R., 1974. Aristostomias scintillans (Malacosteidae): a deep-sea fish with visual pigments apparently adapted to its own bioluminscence. Vision Research, 14, 545550.CrossRefGoogle Scholar
Partridge, J.C., Archer, S.N. & Lythgoe, J.N., 1988. Visual pigments in the individual rods of deepsea fishes. Journal of Comparative Physiology, 162(A), 543550.CrossRefGoogle Scholar
Shapley, R. & Gordon, J., 1980. The visual sensitivity of the retina of the conger eel. Proceedings of the Royal Society (B), 209, 317330.Google ScholarPubMed
Somiya, H., 1976. Functional significance of the yellow lens in the eyes of Argyropelecus affinis. Marine Biology, 34, 9399.CrossRefGoogle Scholar
Somiya, H., 1982. ‘Yellow lens’ eyes of the stomiatoid deep-sea fish, Malacosteus niger. Proceedings of the Royal Society (B), 215, 481489.Google ScholarPubMed
Vilter, V., 1953. Existence d'une rétine a plusieur mosaiques photoreceptrice chéz un poisson abyssal bathypelagique, Bathylagus benedicti. Compte Rendu des Séxances de la Société Biologie, 147, 19371939.Google Scholar
Vilter, V., 1954. Différentiation fovéale dans l'appareil visuel d'un poisson abyssal, le Bathylagus benedicti. Compte Rendu des Séances de la Société Biologie, 148, 5963.Google ScholarPubMed
Widder, E.A., Latz, M.J. & Case, J.F., 1983. Marine bioluminescence spectra measured with an optical multichannel detector system. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 165, 791809.CrossRefGoogle Scholar