Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T08:39:51.760Z Has data issue: false hasContentIssue false

A remark on algebraic surfaces with polyhedral Mori cone

Published online by Cambridge University Press:  22 January 2016

Viacheslav V. Nikulin*
Affiliation:
Steklov Mathematical Institute, ul. Gubkina 8, Moscow 117966, GSP-1, RussiaDept. of Pure Math. of the University of Liverpool, Liverpool L69 3BX, Englandslava@nikulin.mian.su, V.Nikulin@liverpool.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We denote by FPMC the class of all non-singular projective algebraic surfaces X over ℂ with finite polyhedral Mori cone NE(X) ⊂ NS(X) ⊗ ℝ. If ρ(X) = rk NS(X) ≥ 3, then the set Exc(X) of all exceptional curves on XFPMC is finite and generates NE(X). Let δE(X) be the maximum of (-C2) and pE(X) the maximum of pa(C) respectively for all C ∈ Exc(X). For fixed ρ ≥ 3, δE and pE we denote by FPMCρ,δE,pE the class of all algebraic surfaces XFPMC such that ρ(X) = ρ, δE(X) = δE and pE(X) = pE. We prove that the class FPMCρ,δE,pE is bounded in the following sense: for any X ∈ FPMCρ,δE,pE there exist an ample effective divisor h and a very ample divisor h′ such that h2N(ρ, δE) and h2N′(ρ, δE, pE) where the constants N(ρ, δE) and N′(ρ, δE, pE) depend only on ρ, δE and ρ, δE, pE respectively.

One can consider Theory of surfaces XFPMC as Algebraic Geometry analog of the Theory of arithmetic reflection groups in hyperbolic spaces.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

References

[AN1] Alexeev, V.A. and Nikulin, V.V., The classification of Del Pezzo surfaces with log terminal singularities of the index ≤ 2, involutions of K3 surfaces and reflection groups in Lobachevsky spaces (Russian), Doklady po matematike i prilogeniyam, MIAN, 2 (1988), no. 2, 51150.Google Scholar
[AN2] V.Alexeev, A. and Nikulin, V.V., The classification of Del Pezzo surfaces with log terminal singularities of the index ≤ 2 and involutions of K3 surfaces, Dokl. AN SSSR, 306 (1989), no. 3, 525528.Google Scholar
[B1] Borcherds, R., Automorphic forms on Os+2,2 and infinite products, Invent. Math., 120 (1995), 161213.Google Scholar
[B2] Borcherds, R., The moduli space of Enriques surfaces and the fake monster Lie super- algebra, Topology, 35 (1996), no. 3, 699710.Google Scholar
[CCL] Cardoso, G.L., Curio, G. and Löst, D., Perturbative coupling and modular forms in N = 2 string models with a Wilson line, Nucl. Phys., B491 (1997), 147183; hep-th/9608154.CrossRefGoogle Scholar
[CD] F.Cossec, R. and Dolgachev, I.V., Enriques surfaces I, Birkhäuser, Progress in Mathematics, Vol. 76, 1989, pp. 397.Google Scholar
[D] Dolgachev, I.V., On rational surfaces with elliptic pencil (Russian), Izv. AN SSSR, Ser. matem., 30 (1966), 10731100.Google Scholar
[E] Esselmann, F., Über die maximale Dimension von Lorentz-Gittern mit coendlicher Spiegelungsgruppe, J. Number Theory, 61 (1996), 103144.Google Scholar
[GN] Gritsenko, V.A. and Nikulin, V.V., Siegel automorphic form correction of some Lorentzian Kac-Moody Lie algebras, Amer. J. Math., 119 (1997), no. 1, 181224; alg-geom/9504006.Google Scholar
[GN2] Gritsenko, V.A. and Nikulin, V.V., Siegel automorphic form correction of a Lorentzian Kac-Moody algebra, C. R. Acad. Sci. Paris Sér. A-B, 321 (1995), 11511156.Google Scholar
[GN3] Gritsenko, V.A. and Nikulin, V.V., K3 surfaces, Lorentzian Kac-Moody algebras and mirror symmetry, Math. Res. Lett., 3 (1996), no. 2, 211229; alg-geom/9510008.Google Scholar
[GN4] Gritsenko, V.A. and Nikulin, V.V., The Igusa modular forms and “the simplest” Lorentzian Kac-Moody algebras, Matem. Sbornik, 187 (1996), no. 11, 2766.Google Scholar
[GN5] Gritsenko, V.A. and Nikulin, V.V., Automorphic forms and Lorentzian Kac-Moody algebras. Part I, Intern. J. Math., 9 (1998), no. 2, 153199; alg-geom/9610022.Google Scholar
[GN6] Gritsenko, V.A. and Nikulin, V.V., Automorphic forms and Lorentzian Kac-Moody algebras. Part II, Intern. J. Math., 9 (1998), no. 2, 201275; alg-geom/9611028.Google Scholar
[GN7] Gritsenko, V.A. and Nikulin, V.V., The arithmetic mirror symmetry and Calabi-Yau manifolds, Commun. Math., to appear; alg-geom/9612002.Google Scholar
[Hal] Halphen, , Sur les courbes planes du sixiéme degré à neuf points doubles, Bull. Soc. math. France, 10 (1881), 162172.Google Scholar
[Har] Hartshorne, R., Algebraic Geometry, Springer, 1977, pp. 496.Google Scholar
[HM] Harvey, J. and Moore, G., Algebras, BPS-states, and strings, Nucl. Physics., B463 (1996), 315368; hep-th/9510182.Google Scholar
[Ka] Kawai, T., String duality and modular forms, Phys. Lett., B397 (1997), 5162; hep-th/9607078.CrossRefGoogle Scholar
[Kaw] Kawamata, Y., A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann., 261 (1982), 4346.CrossRefGoogle Scholar
[Ko] Kondo, S., Enriques surfaces with finite automorphism groups, Japanese J. Math., 12 (1986), no. 2, 191282.Google Scholar
[L] Lazarsfeld, R., Lectures on linear systems, Complex Algebraic Geometry (Kollar, J., eds.), Amer. Math. Soc. (IAS/Park City, Math. Series, Vol. 3) (1997).Google Scholar
[Ma] Manin, Yu.I., Cubic forms: Algebra, Geometry, Arithmetic, Nauka, 1972.Google Scholar
[Mo] Mori, S., Threefolds whose canonical bundles are not numerically effective, Ann. Math., 116 (1982), no. 1, 133176.Google Scholar
[Moo] Moore, G., String duality, automorphic forms, and generalized Kac-Moody algebras, Preprint (1997; hep-th/9710198).Google Scholar
[Na] Nagata, M., On rational surfaces I, II, Mem. of College of Sci. Univ. of Kyoto, Ser. A, 32 (1960), no, 3 351370.Google Scholar
[N1] Nikulin, V.V., Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 111177.Google Scholar
[N2] Nikulin, V.V., On factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections, Dokl. Akad. Nauk SSSR, 248 (1979), 13071309.Google Scholar
[N3] Nikulin, V.V., On the quotient groups of the automorphism groups of hyperbolic forms by the subgroups generated by 2-reflections, Algebraic-geometric applications, Current Problems in Math. Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 18 (1981), 3114.Google Scholar
[N4] Nikulin, V.V., On arithmetic groups generated by reflections in Lobachevsky spaces, Math. USSR Izv., 16 (1981), 637669.Google Scholar
[N5] Nikulin, V.V., On the classification of arithmetic groups generated by reflections in Lobachevsky spaces, Math. USSR Izv., 18 (1982), 45 (1981), no. 1, 113142.CrossRefGoogle Scholar
[N6] Nikulin, V.V., Surfaces of type K3 with finite automorphism group and Picard group of rank three, Trudy Inst. Steklov, 165 (1984), 113142.Google Scholar
[N7] Nikulin, V.V., On a description of the automorphism groups of Enriques surfaces, Dokl. AN SSSR, 277 (1984), 13241327.Google Scholar
[N8] Nikulin, V.V., Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, Proc. Int. Congr. Math. Berkeley 1986, 1, pp. 654669.Google Scholar
[N9] Nikulin, V.V., Basis of the diagram method for generalized reflection groups in Lobachevsky spaces and algebraic surfaces with nef anticanonical class, Intern. J. of Math., 7 (1996), no. 1, 71108.CrossRefGoogle Scholar
[N10] Nikulin, V.V., A lecture on Kac-Moody Lie algebras of the arithmetic type, Preprint Queen’s University, Canada, #1994-16, (1994).Google Scholar
[N11] Nikulin, V.V., Reflection groups in Lobachevsky spaces and the denominator identity for Lorentzian Kac-Moody algebras, Izv. Akad. Nauk of Russia. Ser. Mat., 60 (1996), no. 2, 73106.Google Scholar
[N12] Nikulin, V.V., The remark on discriminants of K3 surfaces moduli as sets of zeros of automorphic forms, J. of Mathematical Sciences,, 81 (1996), no. 3, Plenum Publishing; alg-geom/9512018, 27382743.Google Scholar
[N13] Nikulin, V.V., K3 surfaces with interesting groups of automorphisms, J. of Math. Sciences, to appear; alg-geom/9701011.Google Scholar
[N14] Nikulin, V.V., On the classification of hyperbolic root systems of the rank three., Preprint Max-Planck-Institut für Mathematik,, MPI-99 (1999).Google Scholar
[O] Ogg, A., Cohomology of abelian varieties over function fields, Ann. Math., 76 (1962), 185212.Google Scholar
[P-ŠŠ] Pjatetckiĭ-Šapiro, I.I. and Šafarevich, I.R., A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 530572.Google Scholar
[R] Reider, I., Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. Math., 127 (1988), 309316.CrossRefGoogle Scholar
[Sh1] Šafarevič, I.R. (ed.), Algebraic surfaces, Proc. Steklov Math. Instit., 1965.Google Scholar
[Sh2] Šafarevič, I.R. (ed.) Basic Algebraic Geometry, Nauka, 1988.Google Scholar
[Sh3] Šafarevič, I.R. (ed.) Principal homogeneous spaces over function fields, Proc. Steklov Inst. Math., 64 (1961), 316346.Google Scholar
[Vie] Viehweg, E., Vanishing theorems, J. reine und angew. Math., 335 (1982), 18.Google Scholar
[V1] Vinberg, E.B., The absence of crystallographic reflection groups in Lobachevsky spaces of large dimension, Trudy Moscow. Mat. Obshch., 47 (1984), 67102.Google Scholar
[V2] Vinberg, E.B., Hyperbolic reflection groups, Uspekhi Mat. Nauk, 40 (1985), 2966.Google Scholar