Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T15:02:03.808Z Has data issue: false hasContentIssue false

Structure and development of Lobatostoma manteri sp.nov. (Trematoda: Aspidogastrea) from the Great Barrier Reef, Australia

Published online by Cambridge University Press:  06 April 2009

Klaus Rohde
Affiliation:
Department of Parasitology, University of Queensland, St Lucia, Brisbane 4067, Queensland, Australia

Extract

Lobatostoma manteri sp.nov. is described. It differs from other species of this genus in the number of marginal alveoli (usually 56–62), the location of the testis near the posterior end and the large size of the cirrus pouch. Mature worms occur in the intestine of the fish Trachinotus blochi. Eggs containing fully developed larvae are laid. The eggs are eaten by snails and hatch in the stomach. Larvae have an oral sucker, pharynx, simple caecum, ventro-terminal acetabulum, two dorsal excretory bladder cells in front of the acetabulum, and a caudal appendage. They migrate into the digestive gland and differentiate to pre-adults with fully developed genital organs and the full number of alveoli on the adhesive disk; young spermatozoa and egg cells develop but do not mature. Pre-adults have a minimum number of 8500 sensory papillae on the surface. The worms are usually found in a cavity formed by enlargement of the main duct and one or more (?) side ducts of the digestive gland near the stomach in Cerithium moniliferum, or in the stomach and main ducts of the digestive gland of Peristernia australiensis. They may creep from the ducts into the stomach and back into the ducts. Fish become infected by eating snails. Worms from fish die soon after transfer into sea water but can be kept alive for up to 13 days in frog's Ringer solution or dilute sea water (1:5), in which they lay eggs containing larvae infective to snails. Worms from snails remain alive in sea water, dilute sea water, frog's Ringer or Tyrode solution. Eggs of worms from single infections have the haploid chromosome number of 7; there is normally no self-fertilization and development does not reach the blastula stage. The life-cycle of Lobatostoma manteri is the simplest two-host cycle of trematodes known. Reasons are given why it must be considered the most primitive one, of a type from which digenean life-cycles have evolved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, H., (1855). Über das Wassergefässystem, die Geschlechtsverhäaltnisse, die Eibildung und die Entwicklung des Aspidogaster conchicola mit Berücksichtigung und Vergleichung anderer Trematoden. Zeitschrift für wissenschaftliche Zoologie 6, 349–76.Google Scholar
Jamieson, B. G. M., (1966) Larval stages of the progenetic trematode Parahemiurus bennettae Jamieson, 1966 (Digenea, Hemiuridae) and the evolutionary origin of cercariae.. Proceedings of the Royal Society of Queensland 77, 8192.Google Scholar
Mackenzie, K., & Gibson, D. I., (1970). Ecological studies of some parasites of plaice Pleuronectes platessa L. and flounder Platichthys flesus (L.). In Aspects of Fish Parasitology, ed. Taylor, A. E. R. and Muller, R. R.. Symposium of the British Society for Parasitology, no. 8, pp. 142.Google Scholar
Marshall, T. C., (1964). Fishes of the Great Barrier Reef and Coastal Waters of Queensland. Sydney, London, Melbourne: Angus & Robertson..Google Scholar
Munro, I. S. R., (1967). The Fishes of New Guinea. Port Moresby: Department of Agriculture, Stock and Fisheries.Google Scholar
Pearson, J. C., (1970). A phylogeny of life-cycle patterns of the Digenea (2nd International Congress for Parasitology).. Journal of Parasitology 56, Sect. II, 262–4.Google Scholar
Pearson, J. C., (1972). A phylogeny of life-cycle patterns of the Digenea. Advances in parasitology 10, 153189.CrossRefGoogle ScholarPubMed
Rai, S. L., (1964). Morphology and life history of Aspidogaster indicum Dayal, Dayal, 1943 (Trematoda: Aspidogastridae).. Indian Journal of Helminthology 16, 100–41.Google Scholar
Rohde, K., (1966) Sense receptors of Multicotyle purvisi Dawes (Trematoda, Aspidobothria). Nature 211, 820–2.CrossRefGoogle ScholarPubMed
Rohde, K., (1971 a). Untersuchungen an Multicotyle purvisi Dawes, 1941 (Trematoda: Aspidogastrea). I. Entwicklung und Morphologie. Zoologische Jahrbücher (Abteilung fü Anatomie) 88, 138–87.Google Scholar
Rohde, K., (1971 b). Phylogenetic origin of trematodes. In Perspektiven der Cercarienforschung, ed. K. Odening. Parasitologische Schriftenreihe 21, 1727.Google Scholar
Rohde, K., (1971 c). Untersuchungen an Multicotyle purvisi Dawes, 1941 (Trematoda: Aspidogastrea). V. Licht- und elektronenmikroskopischer Bau der Randkörper.. Zoologische Jahrbiicher (Abteilung fiir Anatomie) 88, 387–98.Google Scholar
Rohde, K., (1971 d). Untersuchungen an Multicotyle purvisi Dawes, 1941 (Trematoda: Aspidogastrea). VIII. Elektronenmikroskopischer Bau des Exkretionssystems. International Journal for Parasitology 1, 275–86.CrossRefGoogle Scholar
Rohde, K., (1972). The Aspidogastrea, especially Multicotyle purvisi Dawes. Advances in Parasitology 10, 77151.CrossRefGoogle Scholar
Skrjabin, K. I., (1952). Trematodes of Animals and Man, 6. Moscow, Isdatelstvo Akademii Nauk SSSR (in Russian).Google Scholar
Stunkard, H. W., (1959). The morphology and life-history of the digenetic trematode, Asymphylodora amnicolae n.sp.; the possible significance of progenesis for the phylogeny of the Digenea. Biological Bulletin 117, 562–81.CrossRefGoogle Scholar
Voeltzkow, A., (1888). Aspidogaster conchicola. Arbeiten aus dem zoologisch-zootomischen Institut, Würzburg 8, 249–89.Google Scholar
Williams, C. O., (1942). Observations on the life history and taxonomic relationship of the trematode Aspidogaster conchicola. Journal of Parasitology 28, 467–75.CrossRefGoogle Scholar
Williams, H. H., McVicar, A. H., & Ralph, R., (1970). The alimentary canal of fish as an environment for helminth parasites. In Aspects of Fish Parasitology, ed. Taylor, A. E. R. and Muller, R.. Symposium of the British Society for Parasitology, no. 8, pp. 4377.Google Scholar
Wootton, D. M., (1966). The cotylocidium larva of Cotylogasteroides occidentalis (Nickerson, 1902) Yamaguti 1963 (Aspidocotylea-Trematoda). Proceedings of the First International Congress of Parasitology, Rome, 1964, pp. 547–8 (Abstract).CrossRefGoogle Scholar