Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T19:44:48.854Z Has data issue: false hasContentIssue false

The mode of action of some benzimidazole drugs on Trichinella spiralis

Published online by Cambridge University Press:  06 April 2009

A. Criado Fornelio
Affiliation:
Department of Parasitology, Faculty of Pharmacy, University of Alcalá de Henares, Spain
F. Rodriguez Caabeiro
Affiliation:
Department of Parasitology, Faculty of Pharmacy, University of Alcalá de Henares, Spain
A. Jimenez Gonzalez
Affiliation:
Department of Parasitology, Faculty of Pharmacy, University of Alcalá de Henares, Spain

Summary

In an attempt to find possible targets for benzimidazole action in muscle-stage larvae of Trichinella spiralis, the effects of mebendazole and thiabendazole were tested in vivo by oral treatment of infested mice and in vitro by including these anthelmintics in an adequate maintenance medium containing decapsulated larvae. The effects of the anthelmintics on succinate dehydrogenase and fumarate reductase activities, measured in the mitochondrial fraction obtained from the in vivo- or in vitro-treated larvae showed that only thiabendazole causes significant inhibition of fumarate reductase activity. On the other hand, measurements of free glucose, glycogen reserves and soluble protein in the treated larvae indicate that in vivo, mebendazole and thiabendazole clearly diminish free glucose levels, although in vitro only mebendazole produces the same diminution. Both the glycogen and protein contents of the larvae remained unchanged after treatment in vivo or in vitro. The importance of these findings with regard to a possible site of action for mebendazole and thiabendazole is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, J. (1978). Activation of succinate dehydrogenase from adult Fasciola hepatica (Trematoda). Parasitology 76, 269–75.CrossRefGoogle ScholarPubMed
Boczon, K. (1976). Bioenergetics of Trichinella spiralis larvae and effects of some anthelmintics on succinate dehydrogenase of Trichinella spiralis mitochondria. In Biochemistry of Parasites and Host-Parasite Relationships (ed. H., Van den Bossche), pp. 589597. Amsterdam: Elsevier North-Holland Biomedical Press.Google Scholar
Borgers, M., De Nollin, A., Verheyen, A., De Brabander, M. & Thienpont, D. (1975). Effects of new anthelmintics on the microtubular system of parasites. In Microtubules and Microtubule Inhibitors (ed. Borgers, M. and M., De Brabander), pp. 497508. Amsterdam: North Holland Publishing Company.Google Scholar
Bruss, M. L. & Black, A. L. (1978). Enzymatic microdetermination of glycogen. Analytical Biochemistry 84, 309–12.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Thompson, D. E., Cooper, E. S. & Blanchard, J. (1985). Rate of expulsion of Trichuris trichiura with multiple and single dose regimens of albendazol. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 641–4.CrossRefGoogle Scholar
Bundy, D. A. P., Thompson, D. E., Golden, M. H. N., Cooper, E. S., Anderson, R. M. & Harland, P. J. E. (1985). Population distribution of Trichuris trichiura in a community of Jamaica children. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 232–7.CrossRefGoogle Scholar
Campbell, W. C. (1983). Chemotherapy. In Trichinella and Trichinosis (ed. Campbell, W. C.), pp. 335366. New York and London: Plenum Press.CrossRefGoogle Scholar
Comley, J. C. W. & Wright, D. J. W. (1981). Succinate dehydrogenase and fumarate reductase activity in Aspiculuris tetraptera and Ascaris suum and the effects of the anthelmintics cambendazole, thiabendazole and levamisole. International Journal for Parasitology 11, 7984.CrossRefGoogle Scholar
De Nollin, S. & Van den Bossche, H. (1973). Biochemical effects of mebendazole on Trichinella spiralis larvae. Journal of Parasitology 59, 970–6.CrossRefGoogle ScholarPubMed
Jenkins, D. C. & Carrington, T. S. (1981) An in vitro screening test for compounds active against the parenteral stages of Trichinella spiralis. Tropenmedizin und Parasitologie 32, 31–4.Google Scholar
Jones, M. G. K. (1981). Enzymic assay for starch and glycogen. In Techniques in Life Sciences. Techniques in Carbohydrate Metabolism. 303, pp. 113. Amsterdam: Elsevier-North-Holland Biomedical Press.Google Scholar
Kohler, P. & Bachmann, R. (1978). The effects of antiparasitic drugs levamisole, thiabendazole, praziquantel and chloroquine on mitochondrial electron transport in muscle tissue from Ascaris suum. Molecular Pharmacology 14, 155–63.Google ScholarPubMed
Kohler, P. & Bachmann, R. (1980). The possible mode of action of mebendazole in Ascaris suum. In The Host Invader Interplay (ed. H., Van den Bossche), pp. 727–30. Amsterdam: Elsevier-North-Holland Biomedical Press.Google Scholar
Laclette, J. P., Guerra, G. & Zetina, C. (1980). Inhibition of tubulin polymerization by mebendazole. Biochemical and Biophysical Research Communications 92, 417–23.CrossRefGoogle ScholarPubMed
Lowry, O., Rosebrough, N., Farr, A. & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
McCracken, R. O. & Taylor, D. D. (1983). Biochemical effects of thiabendazole and cambendazole on Hymenolepis diminuta (Cestoda) in vivo. Journal of Parasitology 69, 295301.CrossRefGoogle ScholarPubMed
Meerovitch, E. (1965). Studies on the in vitro axenic development of Trichinella spiralis. I. Basic culture techniques, pattern of development and effect of gaseous phase. Canadian Journal of Zoology 43, 6979.CrossRefGoogle ScholarPubMed
Prichard, R. K. (1970). Mode of action of the anthelmintic thiabendazole in Haemonchus contortus. Nature, London 228, 684.CrossRefGoogle ScholarPubMed
Prichard, R. K. (1973). The fumarate reductase reaction of Haemonchus contortus and the mode of action of some anthelmintics. International Journal for Parasitology 3, 409–17.CrossRefGoogle ScholarPubMed
Prichard, R. K., Hennessy, D. R. & Steel, J. W. (1978). Prolonged administration: a new concept for increasing the spectrum and effectiveness of anthelmintics. Veterinary Parasitology 4, 309–15.CrossRefGoogle Scholar
Rodriguez Caabeiro, F., Criado Fornelio, A. & Jiminez Gonzalez, A. (1985). A comparative study of the succinate dehydrogenase-fumarate reductase complex in the genus Trichinella. Parasitology 91, 577–83.CrossRefGoogle ScholarPubMed
Sangster, N. C. & Prichard, R. K. (1984). Uptake of thiabendazole and its effects on glucose uptake and carbohydrate levels in the thiabendazole-resistant and susceptible Trichostrongylus columbriformis. International Journal for Parasitology 14, 121–6.CrossRefGoogle Scholar
Simpkin, K. G. & Coles, G. C. (1976). Observations on the mode of action of thiabendazole and mebendazole. Parasitology 73, iv.Google Scholar
Spence, A. M., Malone, K. M. B., Novak, M. A. & Woods, R. A. (1982). The effects of mebendazole on the growth and development of Caenorhabditis elegans. Canadian Journal of Zoology 60, 2616–23.CrossRefGoogle Scholar
Stewart, G. L. (1983). Biochemistry. In Trichinella and Trichinellosis (ed. Campbell, W. C.), pp. 153172. New York and London: Plenum Press.CrossRefGoogle Scholar
Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry 6, 24–7.CrossRefGoogle Scholar
Van den Bossche, H. (1972). Biochemical effects of the anthelmintic drug mebendazole. In Comparative Biochemistry of Parasites (ed. H., Van den Bossche), pp. 139158. New York and London: Academic Press.CrossRefGoogle Scholar
Van den Bossche, H., Rochette, F. & Horig, C. (1982). Mebendazole and related anthelmintics. Advances in Pharmacology and Chemotherapy 19, 67128.CrossRefGoogle ScholarPubMed
Watts, S. D., Rapson, E. B., Atkins, A. M. & Lee, D. L. (1982). Inhibition of acetylcholinesterase secretion from Nippostrongylus brasiliensis by benzimidazole anthelmintics. Biochemical Pharmacology 31, 3035–40.CrossRefGoogle ScholarPubMed
Wong, H. A. & Fernando, M. A. (1970). Ancylostoma caninum: uptake of 14C- glucose in vitro. Experimental Parasitology 28, 253–7.CrossRefGoogle ScholarPubMed