Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T21:53:40.004Z Has data issue: false hasContentIssue false

Spermiogenesis and spermatozoan ultrastructure in Polymorphus minutus (Acanthocephala)

Published online by Cambridge University Press:  06 April 2009

P. J. Whitfield
Affiliation:
Department of Zoology, King's College, London

Extract

The spermiogenesis and spermatozoan morphology of the palaeacanthocephalan, P. minutus were studied by a variety of electron microscopical methods.

Spermiogenesis occurs in syncytial clusters of spermatids exhibiting synchronous development. The outstanding events of the spermiogenic process are an enormous elongation of the spermatid nucleus and the eventual breakdown of the spermatid nuclear envelope.

The mature spermatozoon is a filiform cell about 60 μm long and motile by propagated undulations. It consists of two parallel elongate components, the single flagellum and the spermatozoan body. The former has a 9 + 2 tubule organization and the latter contains glycogen granules and membrane-bound dense inclusions as well as a region of condensed chromatin of nuclear origin. No mitochondria appear to be present.

In the University of Cambridge I should like to thank Professor H. Goodwin for the provision of electron microscope facilities and Mr B. Chapman for teaching me to use them. At King's College, London I am indebted to Professor D. R. Arthur and Professor F. R. Whatley for facilities and Mr H. Edge for excellent technical assistance. The work reported in this paper was initiated during the tenure of an S.R.C. Research Studentship and completed whilst in receipt of a Research Fellowship from the Nuffield Foundation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, W. A. (1970). The localization of cytochrome c oxidase activity during mitochondrial specialization in spermiogenesis of prosobranch snails. Journal of Histochemistry and Cytochemistry 18, 201–10.Google Scholar
Anderson, W. A. & Personne, P. (1970). The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species. Journal of Cell Biology 44, 2951.CrossRefGoogle ScholarPubMed
Beams, H. W. & Kessel, R. G. (1968). The Golgi apparatus:structure and function. International Review of Cytology 23, 209–76.CrossRefGoogle ScholarPubMed
Brenner, S. & Horne, R. W. (1959). A negative staining method for high resolution electron microscopy of viruses. Biochimica et biophysica acta 34, 103–10.Google Scholar
Burton, P. R. (1960). Gametogenesis and fertilization in the frog lung fluke, Haematoloechus medioplexus Stafford. (Trematoda: Plagiorchiidae). Journal of Morphology 107, 93122.CrossRefGoogle ScholarPubMed
Burton, P. R. (1966). Substructure of certain cytoplasmic microtubules: an electron microscopic study. Science 154, 903–5.Google Scholar
Burton, P. R. (1967). Fine structure of the reproductive system of a frog lung fluke. II. Penetration of ovum by a spermatozoon. Journal of Parasitology 53, 994–9.CrossRefGoogle ScholarPubMed
Burton, P. R. (1968). Effects of various treatments on microtubules and axial units of lung fluke spermatozoa. Zeitschrift für Zellforschung und mikroskopische Anatomie 87, 226–48.Google Scholar
De Duve, C. & Baudhuin, P. (1966). Peroxisomes (microbodies and related particles). Physiological Reviews 46, 323–57.Google Scholar
De Thé, G. (1964). Cytoplasmic microtubules in different animal cells. Journal of Cell Biology 23, 265–77.CrossRefGoogle Scholar
Dewey, M. M. & Barr, L. (1964). A study of the structure and distribution of the nexus. Journal of Cell Biology 23, 553–85.Google Scholar
Dirksen, E. R. (1961). The presence of centrioles in artificially activated sea urchin eggs. Journal of Biophysical and Biochemical Cytology 11, 244–47.Google Scholar
Fawcett, D. W. (1968). The topographical relationship between the plane of the central pair of flagellar fibrils and the transverse axis of the head in guinea-pig spermatozoa. Journal of Cell Science 3, 187–98.Google Scholar
Fawcett, D. W., Ito, S. & Slautterback, D. (1959). The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. Journal of Biophysical and Biochemical Cytology 5, 435–60.Google Scholar
Foor, W. E. (1968 a). Zygote formation in Ascaris lumbricoides (Nematoda). Journal of Cell Biology 39, 119–34.Google Scholar
Foor, W. E. (1968 b). Cytoplasmic bridges in the ovary of Ascaris lumbricoides. Bulletin of the Tulane University Medical Faculty 27, 23–9.Google Scholar
Franzén, Å. (1956). On spermiogenesis, morphology of the spermatozoon and biology of fertilization among invertebrates. Zoologiska bidrag från Uppsala 31, 355482.Google Scholar
Gibbons, I. R. & Bradfield, J. R. G. (1957). The fine structure of nuclei during sperm maturation in the locust. Journal of Biophysical and Biochemical Cytology 3, 133–40.Google Scholar
Gibbons, I. R. & Grimstone, A. V. (1960). On flagellar structure in certain flagellates. Journal of Biophysical and Biochemical Cytology 7, 697716.Google Scholar
Gibbons, I. R. & Rowe, A. J. (1965). Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149, 424–6.CrossRefGoogle ScholarPubMed
Gresson, R. A. R. & Perry, M. (1961). Electron microscope studies of spermatelosis in Fasciola hepatica L. Experimental Cell Research 22, 18.Google Scholar
Jamuar, M. P. (1966). Studies of spermiogenesis in a nematode, Nippostrongylus brasiliensis. Journal of Cell Biology 31, 381–96.Google Scholar
Kaiser, J. E. (1893). Die Acanthocephalen und ihre Entwicklung. Bibliotheca zoologica 11, Heft 7.Google Scholar
Lee, D. L. & Anya, A. O. (1967). The structure and development of the spermatozoon of Aspiculuris tetraptera (Nematoda). Journal of Cell Science 2, 537–44.Google Scholar
Lumsden, R. D. (1965). Microtubules in the peripheral cytoplasm of cestode spermatozoa. Journal of Parasitology 51, 929–31.CrossRefGoogle ScholarPubMed
Meyer, A. (1933). Acanthocephala Bronn's Klassen und Ordnungen des Tierreichs, Band 4, Abt. 2, Buch 2.Google Scholar
Mizukami, I. & Gall, J. (1966). Centriole replication. II. Sperm formation in the fern, Marsilea and the cycad, Zamia. Journal of Cell Biology 29, 97111.Google Scholar
Morseth, D. J. (1969). Spermtail fine structure of Echinococcus granulosus and Dicrocoelium dendriticum. Experimental Parasitology 24, 4753.Google Scholar
Noé, G. (1910). Sur la spermogenèse du Gigantorhynchus gigas. Archives italiennes de biologie 53, 315–17.Google Scholar
Pattri, H. O. E. (1932). Uber die Doppelbrechung der Spermien. Zeitschrift für Zellforschung und mikroskopische Anatomie 16, 723–44.Google Scholar
Reger, J. F. (1967). A study of the fine structure of developing spermatozoa from the oligochaete, Enchytraeus albidus. Zeitschrift für Zellforschung und mikroskopische Anatomie 82, 257–69.Google Scholar
Reger, J. F. (1969). A fine structure study on spermiogenesis in the Arachnida, Leiobunum sp. (Phalangida; Harvestmen). Journal of Ultrastructural Research 28, 422434.Google Scholar
Renaud, F. L. & Swift, H. (1964). The development of basal bodies and flagella in Allomyces arbusculus. Journal of Cell Biology 23, 339–54.CrossRefGoogle ScholarPubMed
Ridley, R. K. (1969). Electron microscopic studies on dicyemid Mesozoa. II. Infusorigen and infusoriform stages. Journal of Parasitology 55, 779–93.Google Scholar
Rosario, B. (1964). An electron microscope study of spermatogenesis in cestodes. Journal of Ultrastructural Research 11, 412–27.CrossRefGoogle ScholarPubMed
Schuster, F. L. (1963). An electron microscope study of the amoebo-flagellate, Naegleria gruberi (Schardinger). I. The amoeboid and flagellate stages. Journal of Protozoology 10, 297313.Google Scholar
Shapiro, J. E., Hershenov, B. R. & Tulloch, G. S. (1961). The fine structure of Haematoloechus spermatozoan tail. Journal of Biophysical and Biochemical Cytology 9, 211–7.Google Scholar
Taylor, A. E. R. & Godfrey, D. G. (1969). A new organelle of bloodstream salivarian trypanosomes. Journal of Protozoology 16, 466–70.Google Scholar
Vickerman, K. (1969). The fine structure of Trypanosoma congolense in its bloodstream phase. Journal of Protozoology 16, 5469.Google Scholar
Von Bonsdorff, C. & Telkkä, A. (1965). The spermatozoan flagella in Diphyllobothrium, latum (fish tapeworm). Zeitschrift für Zellforschung und mikroskopische Anatomie 66, 643–48.Google Scholar
Whitfield, P. J. (1971). Phylogenetic affinities of Acanthocephala: an assessment of ultra-structural evidence. Parasitology (in the Press).CrossRefGoogle Scholar