Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T06:34:44.668Z Has data issue: false hasContentIssue false

The biology of Plasmodium falciparum transmission stages

Published online by Cambridge University Press:  16 March 2011

K. P. Day*
Affiliation:
The Wellcome Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
R. E. Hayward
Affiliation:
The Wellcome Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
M. Dyer
Affiliation:
The Wellcome Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
*
*Corresponding author

Summary

The most important function of any parasite is to secure transmission to new hosts. The gametocyte, the stage which has become developmentally committed to the sexual cycle, provides a critical link in the transmission of Plasmodium falciparum from the human host to the anopheline mosquito vector. It is therefore imperative that our determination to understand the biology of the gametocyte is greater than the technical obstacles which have resulted in the gametocyte being left very much out of the limelight by the intensive investigation of the asexual bloodstream parasite. Here we explore the areas of gametocyte biology which by nature of their relevance to control and pathology as well as basic biology, are the subjects of investigation in our laboratory. We also point out areas in need of particular attention.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. & Tchernomoretz, I. (1943). The extraerythrocytic origin of gametocytes of Plasmodium gallinaceum Brumpt 1935. Annals of Tropical and Medical Parasitology 37, 148151.CrossRefGoogle Scholar
Aikawa, M. (1988). Human cerebral malaria. American Journal of Tropical Medicine and Hygiene 39, 310.CrossRefGoogle ScholarPubMed
Alano, P. & Carter, R. (1990). Sexual differentiation in malaria parasites. Annual Reviews of Microbiology 44, 429449.CrossRefGoogle ScholarPubMed
Babiker, H. A., Ranford-Cartwright, L. C., Currie, D., Charlwood, J. D., Billingsley, P., Teuscher, T. & Walliker, D. (1994). Random mating in a natural population of the malaria parasite Plasmodium falciparum. Parasitology 109, 413–21.CrossRefGoogle Scholar
Baker, D. A., Thompson, J., Daramola, O. O., Carlton, J. M. & Targett, G. A. (1995). Sexual-stage-specific RNA expression of a new Plasmodium falciparum gene detected by in situ hybridisation. Molecular and Biochemical Parasitology 72, 193201.CrossRefGoogle ScholarPubMed
Barnwell, J. W., Asch, A. S., Nachman, R. L., Yamaya, M., Aikawa, M. & Ingravallo, P. (1989). A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocites. Journal of Clinical Investigation 84, 765773.CrossRefGoogle Scholar
Barnwell, J. W., Howard, R. J., Coon, H. G. & Miller, L. H. (1983). Splenic requirement for antigenic variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium knowlesi Malaria. Infection and Immunity 40, 985994.CrossRefGoogle ScholarPubMed
Baruch, D., Gormley, J. A., Howard, R. J. & Pasloske, B. L. (1996). Plasmodium falciparum erythrocyte membrane protein 1 is a parasitised erythrocyte receptor for adherence to CD36, throbospondin and intercellular adhesion molecular 1. Proceedings of the National Academy of Sciences, USA 93, 34973502.CrossRefGoogle Scholar
Baruch, D. I., Pasloske, B. L., Singhe, H. B., Bi, X., Ma, X. C., Feldman, M., Taraschi, T. F. & Howard, R. J. (1995). Cloning the Plasmodium falciparum gene encoding PfEMPl, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 7787.CrossRefGoogle ScholarPubMed
Berendt, A. R., Ferguson, D. J. P. & Newbold, C. I. (1990). Sequestration in Plasmodium falciparum malaria: sticky cells and sticky problems. Parasitology Today 6, 247254.CrossRefGoogle ScholarPubMed
Berendt, A. R., Simmons, D. L., Tansey, J., Newbold, C. I. & Marsh, K. (1989). Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341, 5759.CrossRefGoogle ScholarPubMed
Biggs, B. A., Gooze, L., Wycherley, K., Wilkinson, D., Boyd, A. W., Forsyth, K.P., Edelman, L., Brown, G. V. & Leech, J. H. (1989). Knob-independent adhesion of Plasmodium falciparum-infected erythrocytes to the leukocyte differentiation antigen CD36. Journal of Experimental Medicine 171, 1883–92.CrossRefGoogle Scholar
Biggs, B. A., Gooze, L., Wycherley, K., Wollish, W., Southwell, B., Leech, J. H. & Brown, G. V. (1991). Antigenic variation in Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 88, 91719174.CrossRefGoogle ScholarPubMed
Birago, C., Bucci, A., Dore, E., Frontali, C. & Zenobi, P. (1982). Mosquito infectivity is directly related to the proportion of repetitive DNA in Plasmodium berghei. Molecular and Biochemical Parasitology 6, 112.CrossRefGoogle Scholar
Boyd, M. F. (1949). Malariology. Philadelphia: W. B. Saunders Ch. 26.Google Scholar
Bray, R. S., McCrae, A. W. & Smalley, M. E. (1976). Lack of a circadian rhythm in the ability of the gametocytes of Plasmodium falciparum to infect Anopheles gambiae. International Journal for Parasitology 6, 399401.CrossRefGoogle ScholarPubMed
Bruce-Chwatt, L. J.. (1963 a). A longitudinal survey of natural malaria infection in a group of West African adults. Part I. West African Medical Journal August, 141–173.Google Scholar
Bruce-Chwatt, L. J. (1963 b). A longitudinal survey of natural malaria infection in a group of West African adults. Part II. The West African Medical Journal August, 199–215.Google Scholar
Carter, R. & Graves, P. M. (1988). Gametocytes. Malaria. Principles and Practice of Malariology 1, 253306. Eds. Wernsdorfer, W. H. and McGregor, I.Google Scholar
Carter, R., Graves, P. M., Quakyi, I. A. & Good, M. F. (1989). Restricted or absent immune responses in human populations to Plasmodium falciparum gamete antigens that are targets of malaria transmission blocking antibodies. Journal of Experimental Medicine 169, 135147.CrossRefGoogle ScholarPubMed
Choi, I. & Mikkelsen, R. B. (1990). Plasmodium falciparum Atp/Adp transport across the parasitophorous vacuolar and plasma membranes. Experimental Parasitology 71, 452462.CrossRefGoogle ScholarPubMed
Chutmongkonkul, M., Maier, W. A. & Seitz, H. M. (1992). A new model for testing gametocytocidal effects of some antimalarial drugs on Plasmodium falciparum in vitro. Annals of Tropical Medicine and Parasitology 86, 20715.CrossRefGoogle ScholarPubMed
Crabb, B. S., Cooke, B. M., Reeder, J. C, Waller, R. F., Caruana, S. R., Davern, K. M., Wickham, M. E., Brown, G. V., Coppel, R. L. & Cowman, A. F. (1997). Targeted gene disruption shows that knobs enable malariainfected red cells to cytoadhere under physiological shear stress. Cell 89, 287298.CrossRefGoogle ScholarPubMed
Dame, j. B. & McCutchan, T. F. (1983). The four ribosomal DNA units of the malaria parasite P. berghei. Journal of Biological Chemistry 258, 69846990.CrossRefGoogle Scholar
Day, K., Hayward, R., Smith, D. & Culvenor, J. (1998). CD36-dependent adhesion and knob expression of the transmission stages of Plasmodium falciparum is stagespecific. Molecular and Biochemical Parasitology (in press).CrossRefGoogle Scholar
Day, K. P., Karamalis, F., Thompson, J., Barnes, D. A., Peterson, C., Brown, H., Brown, G. V. & Kemp, D. J. (1993). Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Proceedings of the National Academy of Sciences, USA 980, 8292–6.CrossRefGoogle Scholar
Day, K. P., Koella, J. C., Nee, S., Gupta, S. & Read, A. R. (1992). Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology 104, S35–S52.CrossRefGoogle ScholarPubMed
Delves, C. J., Ridley, R. G., Goman, M., Holloway, S. P., Hyde, j. E. & Scaife, j. G. (1989). Cloning of a Btubulin gene from Plasmodium falciparum. Molecular Microbiology 3, 15111519.CrossRefGoogle Scholar
Desser, S. S.Baker, J. R. & Lake, P. (1970). The fine structure of Leucocytozoon simondi. I. Gametocytogenesis. Canadian Journal of Zoology 48, 331–6.CrossRefGoogle Scholar
Dunn, M. j. (1969). Alterations of red blood cell sodium transport during malarial infection. Journal of Clinical Investigation 48, 674684.CrossRefGoogle ScholarPubMed
Dyer, M., Hing-Wong, I., Jackson, M., Huynh, P. & Mikkelsen, R. (1994). Isolation and sequence analysis of a cDNA encoding an adenine nucleotide translocator from Plasmodium falciparum. Biochimica et Biophysica Acta 1186, 133136.CrossRefGoogle ScholarPubMed
Dyer, M., Jackson, M., McWhinney, C., Zhao, G. & Mikkelsen, R. (1996). Analysis of a cationtransporting ATPase of Plasmodium falciparum. Molecular and Biochemical Parasitology 78, 112.CrossRefGoogle ScholarPubMed
Elford, B. C., Haynes, J. D., Chulay, J. D. & Wilson, R. J. M. (1985). Small stage-specific changes in the permeability to small hydrophilic solutes of human erythrocytes infected with Plasmodium falciparum. Molecular and Biochemical Parasitology 16, 4360.CrossRefGoogle ScholarPubMed
Field, j. w. & Shute, p. G. (1956). The microscopic diagnosis of human malaria. A morphological study of erythrocytic parasites. Government Press, Kuala Lumpar.Google Scholar
Forsyth, K. P., Philip, G., Smith, T., Kum, E., Southwell, B. & Brown, G. v. (1989). Diversity of antigens expressed on the surface of erythrocytes infected with mature Plasmodium falciparum parasites in Papua New Guinea. American Journal of Tropical Medicine and Hygiene 41, 259265.CrossRefGoogle ScholarPubMed
Galinski, M. R., Medina, C. C., Ingravallo, P. & Barnwell, j. w. (1992). A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69, 12131226.CrossRefGoogle ScholarPubMed
Gamage-Mendis, A. C., Rajakaruna, J., Weerasinghe, S., Mendis, C., Carter, R. & Mendis, K. N. (1993). Infectivity of Plasmodium vivax and P. falciparum to Anopheles tessallatus; relationship between oocyst and sporozoite development. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 36.CrossRefGoogle ScholarPubMed
Garnham, P. c. c. (1931). Observations on Plasmodium falciparum with special reference to the production of crescents. Kenya and East African Medical Journal 8, 221.Google Scholar
Garnham, p. c. c. (1966). Malaria Parasites and Other Haemosporidia. (Oxford: Blackwell Scientific).Google Scholar
Gilks, C. F., Walliker, D. & Newbold, C. I. (1990). Relationships between sequestration antigenic variation and chronic parasitism in Plasmodium chabaudi chabaudi - a rodent malaria model. Parasite Immunology 12, 4564.CrossRefGoogle ScholarPubMed
Ginsburg, H. (1994). Transport pathways in the malaria-infected erythrocyte: characterisation and their use as potential targets for chemotherapy. Biochemical Pharmacology 48, 18471856.CrossRefGoogle ScholarPubMed
Goodyer, I. D., Pouvelle, B., Schneider, T. G., Trelka, D. p. & Taraschi, T. F. (1997). Characterisation of macromolecular transport pathways in malariainfected erythrocytes. Molecular and Biochemical Parasitology 87, 1328.CrossRefGoogle ScholarPubMed
Graves, P. M., Burkot, T. R., Carter, R., Cattani, J. A., Lagog, M., Parker, J., Brabin, B. J., Gibson, F. D., Bradley, D. j. & Alpers, M. P. (1988 a). Measurement of malarial infectivity of human populations to mosquitoes in the Madang area, Papua, New Guinea. Parasitology 96, 251263.CrossRefGoogle ScholarPubMed
Graves, P. M., Carter, R., Burkot, T. R., Quakyi, I. A. & Kumar, N. (1988 b). Antibodies to Plasmodium falciparum gamete surface antigens in Papua New Guinea sera. Parasite Immunology 10, 209218.CrossRefGoogle ScholarPubMed
Gutteridge, W. E., Dave, D. & Richards, W. H. G. (1979). Conversion of dihydroorotate to orotate in parasitic protozoa. Biochimica et Biophysica Acta 582, 390401.CrossRefGoogle ScholarPubMed
Hawking, F., Wilson, M. E. & Gammage, K. (1971). Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 549559.CrossRefGoogle ScholarPubMed
Healer, J., McGuinness, D., Hopcraft, P., Haley, S., Carter, R. & Riley, E. (1997). Complement-mediated lysis of Plasmodium falciparum gametes by malariaimmune human sera is associated with antibodies to the gamete surface antigen Pfs23O. Infection and Immunity 65, 30173023.CrossRefGoogle Scholar
Holloway, S. P., Sims, P. F. G., Delves, C. J., Scaife, J. G. & Hyde, j. E. (1989). Isolation of α-tubulin genes from the human parasite, Plasmodium falciparum: sequence analysis of a-tubulin I. Molecular Microbiology 3, 15011510.CrossRefGoogle Scholar
Howard, R.J. (1988). Malaria proteins at the membranes of the membranes of P. falciparum infected erythrocytes. Progress in Allergy 41, 98147.Google Scholar
Janse, C. J., Ponnudurai, T., Lensen, A. H., Meuwissen, J. H., Ramesar, J., Van Der Ploeg, M. & Overdulve, J. P. (1988). DNA synthesis in gametocytes of Plasmodium falciparum. Parasitology 96, 17.CrossRefGoogle ScholarPubMed
Jeffery, G. M. & Eyles, D. E. (1954). The duration in the human host of infections with a Panama strain of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene 3, 219224.CrossRefGoogle ScholarPubMed
Jeffery, G. & Eyles, D. E. (1955). Infectivity to mosquitoes of Plasmodium falciparum as related to gametocyte density and duration of infection. American Journal of Tropical Medicine and Hygiene 4, 781789.CrossRefGoogle ScholarPubMed
Kanaani, J & Ginsberg, H. (1989). Metabolic interconnection between the human malarial parasite, Plasmodium falciparum and its host erythrocyte. Regulation of Atp levels by means of an adenylate translocator and adenylate kinase. Journal of Biological Chemistry 264, 31943199.CrossRefGoogle ScholarPubMed
Karunaweera, N. D., Carter, R., Grau, G. E., Kwiatkowski, D., Del, G.-G. & Mendis, K. N. (1992). Tumour necrosis factor-dependent parasite-killing effects during paroxysms in non-immune Plasmodium vivax malaria patients. Clinical and Experimental Immunology 88, 499505.CrossRefGoogle ScholarPubMed
Kemp, D. J., Cowman, A. F. & Walliker, D. (1990). Genetic diversity in Plasmodium falciparum. Advances in Parasitology 29, 75149.CrossRefGoogle ScholarPubMed
Kilejian, A. (1979). Characterisation of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 76, 46504653.CrossRefGoogle ScholarPubMed
Killick-Kendrick, R. & Warren, M. (1968). Primary exoerythrocytic schizonts of a mammalian Plasmodium as a source of gametocytes. Nature 220, 191192.CrossRefGoogle ScholarPubMed
Kimura, M., Yagamaguchi, Y., Takada, S. & Tanabe, K. (1993). Cloning of a Ca2+ ATPase of Plasmodium falciparum and comparison with vertebrate Ca2+ ATPases. Journal of Cell Science 104, 11291136.CrossRefGoogle Scholar
Kirk, K., Horner, H. A., Elford, B. C., Ellory, J. C. & Newbold, C. I. (1994). Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. Journal of Biological Chemistry 269, 33393347.CrossRefGoogle Scholar
Krishna, S., Cowan, G., Meade, J. C, Wells, R. A., Stringer, J. R. & Robson, K. J (1993). A family of cation ATPase-like molecules from Plasmodium falciparum. Journal of Cell Biology 120, 385395.CrossRefGoogle ScholarPubMed
Landau, I., Miltgen, F., Boulard, Y., Chabaud, A. G. & Baccam, D. (1979). New data on the biology of gametocytes of Plasmodium yoelii yoelii gathered from morphological characteristics indicating their age. Comptes Rendues de Seances Academy of Science D 288, 521522.Google ScholarPubMed
Langreth, S. G., Jensen, J. B., Reese, R. T. & Trager, W. (1978). Fine structure of human malaria in vitro. Journal of Protozoology 25, 443452.CrossRefGoogle ScholarPubMed
Langreth, S. G. & Peterson, E. (1985). Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infection and Immunity 47, 760766.CrossRefGoogle ScholarPubMed
Leveran, A. (1880). Note sur un nouveau parasite trouve dans le sang du plusiers malades atteints de fievre palustre. Bulletin de l'Académie Nationale de Médecine (Paris) 9, 1235.Google Scholar
Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. (1984). Identification of a strain specific malarial antigen exposed on the surface of Plasmodium falciparum-iniected erythrocytes. Journal of Experimental Medicine 159, 15671575.CrossRefGoogle ScholarPubMed
Luse, S. A. & Miller, L. H. (1971). Plasmodium falciparum malaria ultrastructure of parasitized erythrocytes in cardiac vessels. American Journal of Tropical Medicine and Hygiene, 20, 655658.CrossRefGoogle ScholarPubMed
Maccallum, W. G. (1897). On the flagellated form of the malarial parasite. The Lancet 2, 12401241.CrossRefGoogle Scholar
Maccallum, W. G. (1898). On the haematozoan infections of birds. Journal of Experimental Medicine 3, 117136.CrossRefGoogle ScholarPubMed
Mackerras, M. J. & Ercole, Q. N. (1949). Some observations on the action of quinine and plasmoquine on Plasmodium vivax. Transactions of the Royal Society of Tropical Medicine and Hygiene 42, 443454.CrossRefGoogle ScholarPubMed
Macpherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. (1985). Human cerebral malaria: a quantitative ultrastructural analysis or parasitized erythrocyte sequestration. American Journal of Pathology 119, 384401.Google ScholarPubMed
Marsh, K. & Howard, R. J. (1986). Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science 231, 150153.CrossRefGoogle ScholarPubMed
McCutchan, T. F., Cruz, V. F. D. L., Lal, A. A., Gunderson, J. H., Elwood, H. J. & Sogin, M. L. (1988). Primary sequences of two small subunit ribosomal Rna genes from P. falciparum. Molecular and Biochemical Parasitology 28, 6368.CrossRefGoogle Scholar
Meszoely, C. A., Erbe, E. F., Steere, R. L., Trosper, J. & Beaudoin, R. L. (1987). Plasmodium falciparum: freezefracture of the gametocyte pellicular complex. Experimental Parasitology 64, 300309.CrossRefGoogle ScholarPubMed
Molineaux, L. (1988). The epidemiology of human malaria as an explanation of its distribution, including some implications for its control. Malaria. Principles and Practice of Malariology 2, 913–999. Eds. Wernsdorfer, W. H. and McGregor, I.Google Scholar
Naotunne, T. S., Karunaweera, N. D., Del, G.-G., Kularatne, M. U., Grau, G. E., Carter, R. & Mendis, K. N. (1991). Cytokines kill malaria parasites during infection crisis: extracellular complementary factors are essential. Journal of Experimental Medicine 173, 523529.CrossRefGoogle ScholarPubMed
Ockenhouse, C. F., Tandon, N. N., Magowan, C., Jamieson, G. A. & Chulay, J. D. (1989). Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science 243, 14691471.CrossRefGoogle ScholarPubMed
Ockenhouse, C. F., Tegoshi, T., Maeno, Y., Benjamin, C., Ho, M., Kan, K. E., Thway, Y., Win, K., Aikawa, M. & Lobb, R. R. (1992). Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-iniected erythrocytes-roles for Elam-1 and Vcam-1. Journal of Experimental Medicine 176, 11831189.CrossRefGoogle Scholar
Paul, R. E. L., Packer, M. J., Walmsley, M., Lagog, M., Ranford-Cartwright, L. C., Paru, R. & Day, K. P. (1995). Mating patterns in malaria populations of Papua New Guinea. Science 269, 17091711.CrossRefGoogle ScholarPubMed
Petmitr, S. & Krungkrai, J. (1995). Mitochondrial cytochrome b gene in two developmental stages of human malarial parasite Plasmodium falciparum. Southeast Asian Journal of Tropical Medicine and Public Health 26, 600–5.Google ScholarPubMed
Phillips, R. S., Wilson, R. J. & Pasvol, G. (1978). Differentiation of gametocytes in microcultures of human blood infected with Plasmodium falciparum. Journal of Protozoology 25, 394398.CrossRefGoogle ScholarPubMed
Ponnudurai, T., Lensen, A. H., Meis, J. F. & Meuwissen, J. H. (1986). Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology 93, 263274.CrossRefGoogle ScholarPubMed
Price, R. N., Nosten, F., Luxemburger, C., Ter, K.-F. O., Paiphun, L., Chongsuphajaisiddhi, T. & White, N. J. (1996). Effects of artemisiniin derivatives on malaria transmissibility. Lancet 347, 16541658.CrossRefGoogle ScholarPubMed
Rawlings, D. J., Fujioka, H., Fried, M., Keister, D. B., Aikawa, M. & Kaslow, D. C. (1992). Alpha-tubulin II is a male-specific protein in Plasmodium falciparum. Molecular and Biochemical Parasitology 56, 239250.CrossRefGoogle ScholarPubMed
Roberts, D. D., Sherwood, J. A., Spitalnik, S. L., Panton, L. J., Howard, R. J., Dixit, V. M., Frazier, W. A., Miller, L. H. & Ginsburg, V. (1985). Thrombospondin binds falciparum malaria parasitized erythrocytes and my mediate cytoadherence. Nature 318, 6466.CrossRefGoogle Scholar
Roberts, D. J., Craig, A. G., Berendt, A. R., Pinches, R., Nash, G., Marsh, K. & Newbold, C. I. (1992). Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689692.CrossRefGoogle ScholarPubMed
Rogers, N. J., Daramola, O., Targett, G. A. & Hall, B. S. (1996). CD36 and intercellular adhesion molecule 1 mediate adhesion of developing Plasmodium falciparum gametocytes. Infection and Immunity 64, 14801483.CrossRefGoogle ScholarPubMed
Rogers, N. J., Targett, G. A. T. & Hall, B. S. (1966). Plasmodium falciparum gametocyte adhesion to C32 cells is inhibited by antibodies to modified band 3. Infection and Immunity 64, 42614268.CrossRefGoogle Scholar
Rogerson, S. J.. Chaiyaroj, S. C., Ng, K., Reeder, J. C. & Brown, G. V. (1995). Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum infected erythrocytes. Journal of Experimental Medicine 182, 1520.CrossRefGoogle ScholarPubMed
Ross, R. (1898). Report on the cultivation of Proteosoma, Labbe, in grey mosquitoes. Indian Medical Gazette 33, 401448.Google Scholar
Ross, R. (1923). Memoirs. London. John Murray.Google Scholar
Saul, A., Graves, P. & Edser, L. (1990). Refractoriness of erythrocytes infected with Plasmodium falciparum gametocytes to lysis by sorbitol. International Journal for Parasitology 20, 10951097.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Valdez, E. (1989). In vitro cytoadherence of Plasmodium falciparum infected erythrocytes to melanoma cells: factors affecting adhesion. Parasitology 98, 359369.CrossRefGoogle ScholarPubMed
Sherwood, J. A., Spitalnik, S. L., Aley, S. B., Quakyi, I. A. & Howard, R. J. (1986). Plasmodium falciparum and P. knozvlesi: initial identification and characterization of malaria synthesized glycolipids. Experimental Parasitology 62, 127141.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1982a). Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology 84, 111.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1982b). Gametocytogenesis of Plasmodium falciparum in vitro: ultrastructural observations on the lethal action of chloroquine. Annals of Tropical Medicine and Parasitology 76, 1523.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1983). Sexual development of malarial parasites. Advances in Parasitology 22, 153216.CrossRefGoogle ScholarPubMed
Sinden, R. E., Butcher, G. A., Billker, O. & Fleck, S. L. (1996). Regulation of infectivity of Plasmodium to the mosquito vector. Advances in Parasitology 38, 53117.CrossRefGoogle Scholar
Sinden, R. E., Canning, E. U., Bray, R. S. & Smalley, M. E. (1978). Gametocyte and gamete development in Plasmodium falciparum. Proceedings of the Royal Society of London B Biological Sciences 201, 375399.Google ScholarPubMed
Sinden, R. E. & Hartley, R. H. (1985). Identification of the meiotic divisions of the malarial parasites. Journal of Protozoology 32, 742744.CrossRefGoogle ScholarPubMed
Sinden, R. E., Ponnudurai, T., Smits, M. A., Simm, A. M. & Meuwissen, J. H. (1984). Gametocytogenesis of Plasmodium falciparum in vitro: a simple technique for the routine culture of pure capacitated gametocytes en masse. Parasitology 88, 239247.CrossRefGoogle ScholarPubMed
Sinden, R. E. & Smalley, M. E. (1979). Gametocytogenesis of Plasmodium falciparum in vitro: the cell-cycle. Parasitology 79, 277296.CrossRefGoogle ScholarPubMed
Smalley, M. E., Abdalla, S. & Brown, J. (1980). The distribution of Plasmodium falciparum in the peripheral blood and bone marrow of Gambian children. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 103105.CrossRefGoogle Scholar
Smalley, M. E. & Sinden, R. E. (1977). Plasmodium falciparum gametocytes: their longevity and infectivity. Parasitology 74, 18.CrossRefGoogle ScholarPubMed
Smith, J. D., Chitnis, C. E., Craig, A. G., Roberts, D. J., Hudson-Taylor, D. E., Peterson, D. S., Pinches, R., Newbold, c. I. & Miller, L. (1995). Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101110.CrossRefGoogle ScholarPubMed
Su, X.-Z., Heatwole, V. M., Wertheimer, S. P., Guinet, F., Herrfeldt, J. A., Peterson, D. S., Ravetch, J. A. & Wellems, T. E. (1995). The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum infected erythrocytes. Cell 82, 89100.CrossRefGoogle ScholarPubMed
Tanabe, K., Mikkelsen, R. B. & Wallach, D. F. (1982). Calcium transport of Plasmodium chabaudi-iniected erythrocytes. Journal of Cell Biology 93, 680684.CrossRefGoogle ScholarPubMed
Taylor, D. W., Parra, M., Chapman, G. B., Stearns, M. E., Rener, J., Aikawa, M., Uni, S., Aley, S. B., Panton, L. J. & Howard, R. J. (1987). Localisation of Plasmodium falciparum histidine-rich protein 1 in the erythrocyte skeleton under knobs. Molecular and Biochemical Parasitology 25, 165174.CrossRefGoogle ScholarPubMed
Taylor, L. H., Walliker, D. & Read, A. F. (1997a). Mixed-genotype infections of malaria parasites: within-host dynamics and transmission success of competing clones. Proceedings of the Royal Society of London B 264, 927935.CrossRefGoogle ScholarPubMed
Taylor, L. H., Walliker, D. & Read, A. F. (1997 b). Mixed-genotype infections of the rodent malaria Plasmodium chabaudi are more infectious to mosquitoes than single-genotype infections. Parasitology 115, 121132.CrossRefGoogle Scholar
Thompson, J. & Sinden, R. E. (1994). In situ detection of Pbs21 mRNA during sexual development of Plasmodium berghei. Molecular and Biochemical Parasitology 68, 189196.CrossRefGoogle Scholar
Thomson, J. G. & Robertson, A. (1935). The structure and development of Plasmodium falciparum gametocytes in the internal organs and peripheral circulation. Transactions of the Royal Society of Tropical Medicine and Hygiene 29, 3140.CrossRefGoogle Scholar
Trottein, F. & Cowman, A. F. (1995). Molecular cloning and sequence of two novel P-type ATPases from Plasmodium falciparum. European Journal of Biochemistry 227, 214225.CrossRefGoogle Scholar
Udomsangpetch, R., Aikawa, M., Berzins, K., Wahlgren, M. & Perlmann, p. (1989). Cytoadherence of knobless Plasmodium falciparum-infected erythrocytes and its inhabitants by a human monoclonal antibody. Nature 338, 763765.CrossRefGoogle Scholar
Vermeulen, A. N., Ponnudurai, T., Beckers, P. J., Verhave, J. P., Smits, M. A. & Meuwissen, J. H. (1985). Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. Journal of Experimental Medicine 162, 14601476.CrossRefGoogle Scholar
Vermeulen, A. N., Van, D.-J., Brakenhoff, R. H., Lensen, T. H., Ponnudurai, T. & Meuwissen, J. H. (1986). Characterisation of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Molecular and Biochemical Parasitology 20, 155163.CrossRefGoogle Scholar
Walliker, D. (1989). Genetic recombination in malaria parasites. Experimental Parasitology 69, 303309.CrossRefGoogle Scholar
Walliker, D., Carter, R. & Morgan, S. (1973). Genetic recombination in Plasmodium berghei. Parasitology 66, 309320.CrossRefGoogle Scholar
Waters, A. P., Higgins, D. G. & McCutchan, T. F. (1991). Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proceedings of the National Academy of Sciences, USA 88, 3140–3144.CrossRefGoogle Scholar
Waters, A. P., Syin, C. & McCutchan, T. F. (1989). Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature 342, 438440.CrossRefGoogle Scholar
Wesseling, J. G., Snyders, P. J. F., Someren, P. V., Jansen, J., Smits, M. A. & Schoenmakers, J. G. G. (1989). Stage specific expression and genomic expression of the actin genes of the malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology 35, 167176.CrossRefGoogle Scholar