Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:36:05.252Z Has data issue: false hasContentIssue false

Bayesian age-stage modelling of Plasmodium falciparum sequestered parasite loads in severe malaria patients

Published online by Cambridge University Press:  23 August 2004

T. SMITH
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, Postfach, CH-4002, Basel, Switzerland
K. DIETZ
Affiliation:
Institut für Medizinsche Biometrie, Westbahnhofstrasse 55, D-72070, Tübingen, Germany
P. VOUNATSOU
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, Postfach, CH-4002, Basel, Switzerland
I. MÜLLER
Affiliation:
Swiss Tropical Institute, Socinstrasse 57, Postfach, CH-4002, Basel, Switzerland Current address: Papua New Guinea Institute of Medical Research, PO Box 60, Goroka, EHP, Papua New Guinea.
M. ENGLISH
Affiliation:
Kenya Medical Research Institute Laboratories (KEMRI)/Wellcome Trust Kilifi District Hospital, PO Box 230, Kilifi, Kenya
K. MARSH
Affiliation:
Kenya Medical Research Institute Laboratories (KEMRI)/Wellcome Trust Kilifi District Hospital, PO Box 230, Kilifi, Kenya

Abstract

A discrete-time age-stage model is proposed for estimating the number of sequestered parasites in severe malaria patients. A Bayesian Markov chain Monte Carlo (MCMC) approach is used to model the dynamics of Plasmodium falciparum parasitaemia in 107 paediatric patients in a randomized controlled trial of quinine and artemether in Kenya, in whom 4-hourly peripheral parasitaemia determinations were made. The MCMC approach allows the model to be fitted simultaneously to the entire dataset, providing point and interval estimates for both population and individual patient parameters. Analysis of a simulated dataset indicated that the models gave good estimates of the distribution of parasites between different stages on enrolment, for patients with a wide range of initial states. The analysis of the Kenyan patients suggested that there is considerable variation between patients within the same centre, in both the proportion of sequestered parasites and the intrinsic rate of increase of the parasite population in the absence of treatment. The resulting models should prove a useful tool for cross-validating biochemical approaches for estimating the sequestered load.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BEST, N., COWLES, M. K. & VINES, K. ( 1996). CODA: Convergence Diagnosis and Output Analysis Software for Gibbs Sampling Output. [0.30]. Cambridge, MRC Biostatistics Unit.
CHENG, Q., LAWRENCE, G., REED, C., STOWERS, A., RANFORD-CARTWRIGHT, L., CREASEY, A., CARTER, R. & SAUL, A. ( 1997). Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. American Journal of Tropical Medicine and Hygiene 57, 495500.CrossRefGoogle Scholar
COLLINS, W. E. & JEFFERY, G. M. ( 1999). A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum in patients previously infected with heterologous species of Plasmodium: effect on development of parasitologic and clinical immunity. American Journal of Tropical Medicine and Hygiene 61, 3643.CrossRefGoogle Scholar
EVANS, M., HASTINGS, N. & PEACOCK, B. ( 2000). “von Mises Distribution.” Ch. 41 in Statistical Distributions, 3rd Edn. pp. 189191. Wiley, New York.
FAIRLEY, N. H. ( 1947). Blood examination and prognosis in acute falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 40, 3348.Google Scholar
GRAVENOR, M. B., MCLEAN, A. R. & KWIATKOWSKI, D. ( 1995). The regulation of malaria parasitaemia: parameter estimates for a population model. Parasitology 110, 115122.CrossRefGoogle Scholar
GRAVENOR, M. B., LLOYD, A. L., KREMSNER, P. G., MISSINOU, M. A., ENGLISH, M., MARSH, K. & KWIATKOWSKI, D. ( 2002). A model for estimating total parasite load in falciparum malaria patients. Journal of Theoretical Biology 217, 137148.CrossRefGoogle Scholar
GRAVENOR, M. B., VAN HENSBROEK, M. B. & KWIATKOWSKI, D. ( 1998). Estimating sequestered parasite population dynamics in cerebral malaria. Proceedings of the National Academy of Sciences, USA 95, 76207624.CrossRefGoogle Scholar
HEIDELBERGER, P. & WELCH, P. ( 1983). Simulation run length control in the presence of an initial transient. Operations Research 31, 11091144.CrossRefGoogle Scholar
MURPHY, S., ENGLISH, M., WARUIRU, C., MWANGI, I., AMUKOYE, E., CRAWLEY NEWTON, C., WINSTANLEY, P., PESHU, N. & MARSH, K. ( 1996). An open randomized trial of artemether versus quinine in the treatment of cerebral malaria in African children. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 298301.CrossRefGoogle Scholar
SAUL, A. ( 1998). Models for the in-host dynamics of malaria revisited: errors in some basic models lead to large over-estimates of growth rates. Parasitology 117, 405407.CrossRefGoogle Scholar
SPIEGELHALTER, D. J., THOMAS, A., BEST, N. & LUNN, D. ( 2003). WinBUGS. [1.4]. 2003. Cambridge.
TER KUILE, F., WHITE, N. J., HOLLOWAY, P., PASVOL, G. & KRISHNA, S. ( 1993). Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Experimental Parasitology 76, 8595.Google Scholar
WARRELL, D. A., MOLYNEUX, M. E. & BEALES, P. F. (eds) ( 1990). Severe and complicated malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 84 (Suppl. 2), 165.Google Scholar
WHITE, N. J., CHAPMAN, D. & WATT, G. ( 1992). The effects of multiplication and synchronicity on the vascular distribution of parasites in falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 590597.CrossRefGoogle Scholar
WHITE, N. J. & HO, M. ( 1992). The pathophysiology of malaria. Advances in Parasitology 31, 83173.CrossRefGoogle Scholar